Boldt Y R, Whiting A K, Wagner M L, Sadowsky M J, Que L, Wackett L P
Department of Microbiology, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis 55455, USA.
Biochemistry. 1997 Feb 25;36(8):2147-53. doi: 10.1021/bi962362i.
Whereas all other members of the extradiol-cleaving catechol dioxygenase family are iron-dependent, the 3,4-dihydroxyphenylacetate 2,3-dioxygenase (MndD) from Arthrobacter globiformis CM-2 is dependent on manganese for catalytic activity. Recently, the endogenous iron ligands of one family member, the 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC), were identified crystallographically as two histidines and a glutamic acid [Sugiyama, K., et al. (1995) Proc. Jpn. Acad., Ser. B 71, 32-35; Han, et al. (1995) Science 270, 976-980; Senda, T., et al. (1996) J. Mol. Biol. 255, 735-752]. Though BphC and MndD have low overall sequence identity (23%), the three BphC metal ligands are all conserved in MndD (H155, H214, and E266). In order to determine whether these residues also act as ligands to manganese in MndD, site-directed mutants of each were constructed, purified, and analyzed for activity and metal content. Mutations H155A, H214A, and E266Q yielded purified enzymes with specific activities of <0.1% of that of the wild-type dioxygenase and bound 0.4, 1.8, and 33% of the wild-type level of manganese, respectively. The relatively high level of manganese [with a Mn(II) EPR signal distinctly different from that of the wild-type enzyme] observed for E266Q suggests that the glutamine may act as a weak ligand to the metal. Mutant E266D, which retains the potential metal binding capability of a carboxylate group, exhibited 12% of the wild-type activity in crude extracts, suggesting that Mn remains bound; however, this mutant protein was too unstable to be purified and analyzed for metal content. On the basis of the low activity and metal content of mutant proteins, we propose that the conserved residues H155, H214, and E266 ligate manganese in MndD. As is the case with the superoxide dismutases, the extradiol-cleaving catechol dioxygenases appear to utilize identical coordinating residues for their iron- and manganese-dependent enzymes.
除二羟基断裂儿茶酚双加氧酶家族的所有其他成员都依赖铁之外,球形节杆菌CM-2的3,4-二羟基苯乙酸2,3-双加氧酶(MndD)的催化活性依赖于锰。最近,通过晶体学方法确定了一个家族成员2,3-二羟基联苯1,2-双加氧酶(BphC)的内源性铁配体为两个组氨酸和一个谷氨酸[Sugiyama, K., 等人 (1995) 《日本科学院学报》, B辑71, 32 - 35; Han, 等人 (1995) 《科学》270, 976 - 980; Senda, T., 等人 (1996) 《分子生物学杂志》255, 735 - 752]。尽管BphC和MndD的总体序列同一性较低(23%),但BphC的三个金属配体在MndD中均保守(H155、H214和E266)。为了确定这些残基在MndD中是否也作为锰的配体,构建了每个残基的定点突变体,进行纯化,并分析其活性和金属含量。H155A、H214A和E266Q突变产生的纯化酶的比活性分别<野生型双加氧酶的0.1%,并且结合的锰分别为野生型水平的0.4%、1.8%和33%。在E266Q中观察到相对较高水平的锰[其Mn(II) EPR信号与野生型酶明显不同],这表明谷氨酰胺可能作为金属的弱配体。保留羧基潜在金属结合能力的突变体E266D在粗提物中表现出野生型活性的12%,这表明锰仍然结合;然而,这种突变蛋白过于不稳定,无法纯化并分析其金属含量。基于突变蛋白的低活性和金属含量,我们提出保守残基H155、H214和E266在MndD中与锰配位。与超氧化物歧化酶的情况一样,除二羟基断裂儿茶酚双加氧酶家族的铁依赖型和锰依赖型酶似乎利用相同的配位残基。