Suppr超能文献

动脉粥样硬化颈动脉磁共振图像的自动分割与斑块特征分析

Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images.

作者信息

Adame I M, van der Geest R J, Wasserman B A, Mohamed M A, Reiber J H C, Lelieveldt B P F

机构信息

Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, P.O. Box 9600, 2333 2A Leiden, The Netherlands.

出版信息

MAGMA. 2004 Apr;16(5):227-34. doi: 10.1007/s10334-003-0030-8. Epub 2004 Mar 16.

Abstract

In vivo MRI provides a means to non-invasively image and assess the morphological features of atherosclerotic carotid arteries. To assess quantitatively the degree of vulnerability and the type of plaque, the contours of the lumen, outer boundary of the vessel wall and plaque components, need to be traced. Currently this is done manually, which is time-consuming and sensitive to inter- and intra-observer variability. The goal of this work was to develop an automated contour detection technique for tracing the lumen, outer boundary and plaque contours in carotid MR short-axis black-blood images. Seventeen patients with carotid atherosclerosis were imaged using high-resolution in vivo MRI, generating a total of 50 PD- and T1-weighted MR images. These images were automatically segmented using the algorithm presented in this work, which combines model-based segmentation and fuzzy clustering to detect the vessel wall, lumen and lipid core boundaries. The results demonstrate excellent correspondence between automatic and manual area measurements for lumen (r = 0.92) and outer (r = 0.91), and acceptable correspondence for fibrous cap thickness (r = 0.71). Though further optimization is required, our algorithm is a powerful tool for automatic detection of lumen and outer boundaries, and characterization of plaque in atherosclerotic vessels.

摘要

体内磁共振成像(MRI)提供了一种非侵入性成像和评估动脉粥样硬化颈动脉形态特征的方法。为了定量评估斑块的易损程度和类型,需要描绘管腔轮廓、血管壁外边界和斑块成分。目前这是通过手动完成的,既耗时又受观察者间和观察者内变异性的影响。这项工作的目标是开发一种自动轮廓检测技术,用于描绘颈动脉MR短轴黑血图像中的管腔、外边界和斑块轮廓。对17例颈动脉粥样硬化患者进行了高分辨率体内MRI成像,共生成50幅质子密度加权(PD)和T1加权MR图像。使用本文提出的算法对这些图像进行自动分割,该算法结合基于模型的分割和模糊聚类来检测血管壁、管腔和脂质核心边界。结果表明,管腔(r = 0.92)和外边界(r = 0.91)的自动测量与手动测量之间具有极好的一致性,纤维帽厚度的一致性尚可(r = 0.71)。尽管需要进一步优化,但我们的算法是自动检测管腔和外边界以及表征动脉粥样硬化血管中斑块的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验