Lu Shou-En, Lin Yong, Shih Wei-Chung Joe
Division of Biometrics, University of Medicine and Dentistry of New Jersey, School of Public Health, New Brunswick, New Jersey 08903, USA.
Biometrics. 2004 Mar;60(1):257-67. doi: 10.1111/j.0006-341X.2004.00155.x.
This article considers clinical trials in which the efficacy measure is taken from several sites within each patient, such as the alveolar bone height of the tooth sites, or bone mineral densities of the lumbar spine sites. Since usually only a small portion of these sites will exhibit changes, the conventional method using per patient average gives a diluted result due to excessive no changes in the data. Different methods have been proposed for this type of data in the case where the observations are mutually independent. This includes the popular "two-part model" (Lachenbruch, 2001, Statistics in Medicine 20, 1215-1234; 2002, Statistical Methods in Medical Research 11, 297-302), which is related to the "composite approach" for discrete and continuous data in Shih and Quan (1997, Statistics in Medicine16, 1225-1239; 2001, Statistica Sinica 11, 53-62). In this article, we model the data with excessive zeros (no changes) in clustered data using a mixture of distributions, and taking into account possible measurement errors. This mixture model includes the two-part model as a special case when one component of the mixture degenerates.
本文考虑了这样的临床试验,其中疗效测量是从每个患者体内的多个部位获取的,比如牙齿部位的牙槽骨高度,或者腰椎部位的骨矿物质密度。由于通常这些部位中只有一小部分会出现变化,使用每个患者的平均值这种传统方法会因数据中过多的无变化情况而得出稀释后的结果。对于观测值相互独立的此类数据,已经提出了不同的方法。这包括广为人知的“两部分模型”(拉琴布鲁克,2001年,《医学统计学》20卷,第1215 - 1234页;2002年,《医学研究中的统计方法》11卷,第297 - 302页),它与施和泉(1997年,《医学统计学》16卷,第1225 - 1239页;2001年,《统计学报》11卷,第53 - 62页)中针对离散和连续数据的“复合方法”相关。在本文中,我们使用混合分布对聚类数据中存在过多零值(无变化)的数据进行建模,并考虑可能的测量误差。当混合的一个成分退化时,这个混合模型包含两部分模型作为一种特殊情况。