Johansson Carina, Finger L David, Trantirek Lukas, Mueller Thomas D, Kim Soyoun, Laird-Offringa Ite A, Feigon Juli
Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA.
J Mol Biol. 2004 Apr 2;337(4):799-816. doi: 10.1016/j.jmb.2004.01.056.
Nucleolin is a 70 kDa multidomain protein involved in several steps of eukaryotic ribosome biogenesis. In vitro selection in combination with mutagenesis and structural analysis identified binding sites in pre-rRNA with the consensus (U/G)CCCG(A/G) in the context of a hairpin structure, the nucleolin recognition element (NRE). The central region of the protein contains four tandem RNA-binding domains (RBDs), of which the first two are responsible for the RNA-binding specificity and affinity for NREs. Here, we present the solution structure of the 28 kDa complex formed by the two N-terminal RNA-binding domains of nucleolin (RBD12) and a natural pre-rRNA target, b2NRE. The structure demonstrates that the sequence-specific recognition of the pre-rRNA NRE is achieved by intermolecular hydrogen bonds and stacking interactions involving mainly the beta-sheet surfaces of the two RBDs and the linker residues. A comparison with our previously determined NMR structure of RBD12 in complex with an in vitro selected RNA target, sNRE, shows that although the sequence-specific recognition of the loop consensus nucleotides is the same in the two complexes, they differ in several aspects. While the protein makes numerous specific contacts to the non-consensus nucleotides in the loop E motif (S-turn) in the upper part of the sNRE stem, nucleolin RBD12 contacts only consensus nucleotides in b2NRE. The absence of these upper stem contacts from the RBD12/b2NRE complex results in a much less stable complex, as demonstrated by kinetic analyses. The role of the loop E motif in high-affinity binding is supported by gel-shift analyses with a series of sNRE mutants. The less stable interaction of RBD12 with the natural RNA target is consistent with the proposed role of nucleolin as a chaperone that interacts transiently with pre-rRNA to prevent misfolding.
核仁素是一种70 kDa的多结构域蛋白,参与真核生物核糖体生物合成的多个步骤。结合诱变和结构分析的体外筛选确定了前体rRNA中发夹结构背景下具有一致序列(U/G)CCCG(A/G)的结合位点,即核仁素识别元件(NRE)。该蛋白的中央区域包含四个串联的RNA结合结构域(RBD),其中前两个负责RNA结合特异性和对NRE的亲和力。在此,我们展示了由核仁素的两个N端RNA结合结构域(RBD12)和天然前体rRNA靶标b2NRE形成的28 kDa复合物的溶液结构。该结构表明,前体rRNA NRE的序列特异性识别是通过分子间氢键和堆积相互作用实现的,主要涉及两个RBD的β-折叠表面和连接残基。与我们之前确定的RBD12与体外筛选的RNA靶标sNRE复合物的NMR结构进行比较,结果表明,尽管两个复合物中环一致核苷酸的序列特异性识别相同,但它们在几个方面存在差异。虽然该蛋白与sNRE茎上部环E基序(S形转弯)中的非一致核苷酸有许多特异性接触,但核仁素RBD12仅与b2NRE中的一致核苷酸接触。如动力学分析所示,RBD12/b2NRE复合物中缺少这些上部茎接触导致复合物稳定性大大降低。一系列sNRE突变体的凝胶迁移分析支持了环E基序在高亲和力结合中的作用。RBD12与天然RNA靶标之间较不稳定的相互作用与核仁素作为伴侣蛋白与前体rRNA短暂相互作用以防止错误折叠的拟议作用一致。