Lemmens Toon, Šponer Jiří, Krepl Miroslav
Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic.
National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
J Chem Inf Model. 2025 Jan 27;65(2):896-907. doi: 10.1021/acs.jcim.4c01954. Epub 2025 Jan 13.
RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket. This leads to a unique molecular mechanism through which the TbRGG2 RRM is capable of rapidly transitioning the U-rich sequence. In contrast, the presence of non-native cytidines induces stalling and destabilization of the complex. By leveraging extensive equilibrium dynamics and a large variety of binding states, TbRGG2 RRM effectively expedites diffusion along the RNA substrate while ensuring robust selectivity for U-rich sequences despite featuring a solitary binding pocket. We further substantiate our description of the complex dynamics by simulating the fully spontaneous association process of U-rich sequences to the TbRGG2 RRM. Our study highlights the critical role of dynamics and auxiliary binding states in interface dynamics employed by RNA-binding proteins, which is not readily apparent in traditional structural studies but could represent a general type of binding strategy employed by many RNA-binding proteins.
RNA识别基序(RRMs)是一类主要与单链RNA结合的关键蛋白质。在本研究中,我们应用标准的原子分子动力学模拟,使用最近开发的OL3-Stafix AMBER力场,来深入了解富含尿苷的RNA与TbRGG2 RRM之间复杂的结合动力学,该力场改进了对单链RNA分子的描述。与揭示单个尿苷结合的主要结合模式的结构实验相辅相成,我们的模拟发现了另外两种结合模式,其中相邻核苷酸侵入结合口袋。这导致了一种独特的分子机制,通过该机制TbRGG2 RRM能够快速转换富含U的序列。相比之下,非天然胞苷的存在会导致复合物的停滞和不稳定。通过利用广泛的平衡动力学和多种结合状态,TbRGG2 RRM有效地加快了沿RNA底物的扩散,同时尽管具有单个结合口袋,但仍确保了对富含U序列的强大选择性。我们通过模拟富含U的序列与TbRGG2 RRM的完全自发缔合过程,进一步证实了我们对复杂动力学的描述。我们的研究强调了动力学和辅助结合状态在RNA结合蛋白所采用的界面动力学中的关键作用,这在传统结构研究中并不明显,但可能代表了许多RNA结合蛋白所采用的一种普遍的结合策略。