Suppr超能文献

拟南芥中SR剪接因子的组织特异性表达及动态组织

Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis.

作者信息

Fang Yuda, Hearn Stephen, Spector David L

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

出版信息

Mol Biol Cell. 2004 Jun;15(6):2664-73. doi: 10.1091/mbc.e04-02-0100. Epub 2004 Mar 19.

Abstract

The organization of the pre-mRNA splicing machinery has been extensively studied in mammalian and yeast cells and far less is known in living plant cells and different cell types of an intact organism. Here, we report on the expression, organization, and dynamics of pre-mRNA splicing factors (SR33, SR1/atSRp34, and atSRp30) under control of their endogenous promoters in Arabidopsis. Distinct tissue-specific expression patterns were observed, and differences in the distribution of these proteins within nuclei of different cell types were identified. These factors localized in a cell type-dependent speckled pattern as well as being diffusely distributed throughout the nucleoplasm. Electron microscopic analysis has revealed that these speckles correspond to interchromatin granule clusters. Time-lapse microscopy revealed that speckles move within a constrained nuclear space, and their organization is altered during the cell cycle. Fluorescence recovery after photobleaching analysis revealed a rapid exchange rate of splicing factors in nuclear speckles. The dynamic organization of plant speckles is closely related to the transcriptional activity of the cells. The organization and dynamic behavior of speckles in Arabidopsis cell nuclei provides significant insight into understanding the functional compartmentalization of the nucleus and its relationship to chromatin organization within various cell types of a single organism.

摘要

前体mRNA剪接机制的组织在哺乳动物和酵母细胞中已得到广泛研究,而在活植物细胞和完整生物体的不同细胞类型中了解较少。在此,我们报道了拟南芥中前体mRNA剪接因子(SR33、SR1/atSRp34和atSRp30)在其内源启动子控制下的表达、组织和动态变化。观察到了不同的组织特异性表达模式,并确定了这些蛋白质在不同细胞类型细胞核内分布的差异。这些因子以细胞类型依赖的斑点状模式定位,同时也在核质中呈弥散分布。电子显微镜分析表明,这些斑点对应于染色质间颗粒簇。延时显微镜显示斑点在有限的核空间内移动,并且它们的组织在细胞周期中发生改变。光漂白后荧光恢复分析显示核斑点中剪接因子的交换速率很快。植物斑点的动态组织与细胞的转录活性密切相关。拟南芥细胞核中斑点的组织和动态行为为理解单个生物体各种细胞类型中细胞核的功能区室化及其与染色质组织的关系提供了重要见解。

相似文献

1
Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis.
Mol Biol Cell. 2004 Jun;15(6):2664-73. doi: 10.1091/mbc.e04-02-0100. Epub 2004 Mar 19.
2
Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors.
Plant Cell. 2006 Nov;18(11):3218-34. doi: 10.1105/tpc.106.044529. Epub 2006 Nov 17.
3
Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells.
Plant J. 2005 Feb;41(4):567-82. doi: 10.1111/j.1365-313X.2004.02321.x.
4
Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei.
Exp Cell Res. 2008 Oct 15;314(17):3175-86. doi: 10.1016/j.yexcr.2008.06.020. Epub 2008 Jul 2.
6
Nuclear bodies and compartmentalization of pre-mRNA splicing factors in higher plants.
Chromosoma. 2004 Feb;112(5):255-66. doi: 10.1007/s00412-003-0271-3. Epub 2004 Jan 23.
7
Nuclear speckles.
Cold Spring Harb Perspect Biol. 2011 Feb 1;3(2):a000646. doi: 10.1101/cshperspect.a000646.
9
Dynamic Distribution and Interaction of the Arabidopsis SRSF1 Subfamily Splicing Factors.
Plant Physiol. 2016 Feb;170(2):1000-13. doi: 10.1104/pp.15.01338. Epub 2015 Dec 23.
10
Nuclear speckles: a model for nuclear organelles.
Nat Rev Mol Cell Biol. 2003 Aug;4(8):605-12. doi: 10.1038/nrm1172.

引用本文的文献

1
Regulation of phase separation and antiviral activity of Cactin by glycolytic enzyme PGK via phosphorylation in .
mBio. 2024 Apr 10;15(4):e0137823. doi: 10.1128/mbio.01378-23. Epub 2024 Mar 6.
2
Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs.
Int J Mol Sci. 2023 Oct 15;24(20):15205. doi: 10.3390/ijms242015205.
3
Nuclear dynamics: Formation of bodies and trafficking in plant nuclei.
Front Plant Sci. 2022 Aug 23;13:984163. doi: 10.3389/fpls.2022.984163. eCollection 2022.
4
Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions.
Front Plant Sci. 2022 Jun 23;13:911277. doi: 10.3389/fpls.2022.911277. eCollection 2022.
5
The integral spliceosomal component CWC15 is required for development in Arabidopsis.
Sci Rep. 2020 Aug 7;10(1):13336. doi: 10.1038/s41598-020-70324-3.
6
An SMU Splicing Factor Complex Within Nuclear Speckles Contributes to Magnesium Homeostasis in Arabidopsis.
Plant Physiol. 2020 Sep;184(1):428-442. doi: 10.1104/pp.20.00109. Epub 2020 Jun 29.
7
Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity.
Nat Plants. 2019 Apr;5(4):352-357. doi: 10.1038/s41477-019-0394-z. Epub 2019 Apr 1.
8
Subcellular Compartmentation of Alternatively Spliced Transcripts Defines Expression.
Plant Physiol. 2018 Apr;176(4):2886-2903. doi: 10.1104/pp.17.01260. Epub 2018 Mar 1.
10
The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms.
Plant Cell Rep. 2017 Jul;36(7):1113-1123. doi: 10.1007/s00299-017-2142-z. Epub 2017 Apr 21.

本文引用的文献

1
Nuclear bodies and compartmentalization of pre-mRNA splicing factors in higher plants.
Chromosoma. 2004 Feb;112(5):255-66. doi: 10.1007/s00412-003-0271-3. Epub 2004 Jan 23.
2
Nuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein.
Plant J. 2003 Dec;36(6):883-93. doi: 10.1046/j.1365-313x.2003.01932.x.
4
Ectopic expression of atRSZ33 reveals its function in splicing and causes pleiotropic changes in development.
Mol Biol Cell. 2003 Sep;14(9):3565-77. doi: 10.1091/mbc.e03-02-0109. Epub 2003 Jun 13.
5
Nuclear speckles: a model for nuclear organelles.
Nat Rev Mol Cell Biol. 2003 Aug;4(8):605-12. doi: 10.1038/nrm1172.
6
Sm and U2B" proteins redistribute to different nuclear domains in dormant and proliferating onion cells.
Planta. 2003 May;217(1):21-31. doi: 10.1007/s00425-002-0966-3. Epub 2003 Jan 25.
8
Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis.
Plant Cell. 1993 Nov;5(11):1661-1668. doi: 10.1105/tpc.5.11.1661.
9
Comprehensive proteomic analysis of the human spliceosome.
Nature. 2002 Sep 12;419(6903):182-5. doi: 10.1038/nature01031.
10
Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors.
J Biol Chem. 2002 Oct 18;277(42):39989-98. doi: 10.1074/jbc.M206455200. Epub 2002 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验