Jensen Malene Ringkjøbing, Led Jens J
Department of Chemistry, University of Copenhagen, The HC Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
J Magn Reson. 2004 Apr;167(2):169-77. doi: 10.1016/j.jmr.2003.12.009.
Four different approaches for determining the electron relaxation rates in paramagnetic metallo-proteins are investigated, using a paramagnetic Ni2+ complex of a protein as an example. All four approaches rely on the determination of the longitudinal paramagnetic relaxation enhancements, R1p, of the 1H nuclei and the backbone 15N nuclei. Three of the methods utilize the field dependence of the R1p rates. It is found that the applicability of each of these methods depends on whether the fast-motion condition, omegaS2tau2<<1, applies to the electron relaxation, omegaS being the Larmor frequency of the electron spin S and tau the correlation time of the electron relaxation. If the fast-motion condition is fulfilled, the electron relaxation rate can be obtained from the ratio of the R1p rates of one or more protons at two magnetic field strengths (method A). On the other hand, if the fast-motion condition does not apply, more elaborate methods must be used that, in general, require a determination of the R1p rates over a larger range of magnetic field strengths (method C). However, in the case of paramagnetic metal ions with relatively slow electron relaxation rates only two magnetic field strengths suffice, if the R1p rates of a hetero nucleus are included in the analysis (method B). In the fourth method (method D), the electron relaxation is estimated as a parameter in a structure calculation, using distance constraints derived from proton R1p rates at only one magnetic field strength. In general, only methods B and C give unambiguous electron relaxation rates.
以蛋白质的顺磁性镍(II)配合物为例,研究了四种不同的确定顺磁性金属蛋白中电子弛豫速率的方法。所有四种方法都依赖于对1H核和主链15N核的纵向顺磁弛豫增强(R1p)的测定。其中三种方法利用了R1p速率的场依赖性。发现这些方法中每种方法的适用性取决于快速运动条件ωS2τ2<<1是否适用于电子弛豫,ωS是电子自旋S的拉莫尔频率,τ是电子弛豫的相关时间。如果满足快速运动条件,则可以从两个磁场强度下一个或多个质子的R1p速率之比获得电子弛豫速率(方法A)。另一方面,如果不适用快速运动条件,则必须使用更精细的方法,通常需要在更大的磁场强度范围内测定R1p速率(方法C)。然而,对于电子弛豫速率相对较慢的顺磁性金属离子,如果在分析中包括异核的R1p速率,则仅两个磁场强度就足够了(方法B)。在第四种方法(方法D)中,在结构计算中,将电子弛豫估计为一个参数,该计算仅使用从一个磁场强度下质子R1p速率导出的距离约束。一般来说,只有方法B和C能给出明确的电子弛豫速率。