Suppr超能文献

一种用于感知内耳噪声损伤的机制。

A mechanism for sensing noise damage in the inner ear.

作者信息

Gale Jonathan E, Piazza Valeria, Ciubotaru Catalin D, Mammano Fabio

机构信息

Department of Physiology and Centre for Auditory Research, University College London, Gower Street, London, WC1E 6BT, United Kingdom.

出版信息

Curr Biol. 2004 Mar 23;14(6):526-9. doi: 10.1016/j.cub.2004.03.002.

Abstract

Our sense of hearing requires functional sensory hair cells. Throughout life those hair cells are subjected to various traumas, the most common being loud sound. The primary effect of acoustic trauma is manifested as damage to the delicate mechanosensory apparatus of the hair cell stereocilia. This may eventually lead to hair cell death and irreversible deafness. Little is known about the way in which noxious sound stimuli affect individual cellular components of the auditory sensory epithelium. However, studies in different types of cell cultures have shown that damage and mechanical stimulation can activate changes in intracellular free calcium concentration (Ca(2+)) and elicit intercellular Ca(2+) waves. Thus an attractive hypothesis is that changes in Ca(2+), propagating as a wave through support cells in the organ of Corti, may constitute a fundamental mechanism to signal the occurrence of hair cell damage. The mechanism we describe here exhibits nanomolar sensitivity to extracellular ATP, involves regenerative propagation of intercellular calcium waves due to ATP originating from hair cells, and depends on functional IP(3)-sensitive intracellular stores in support cells.

摘要

我们的听觉需要功能正常的感觉毛细胞。在整个生命过程中,这些毛细胞会遭受各种损伤,其中最常见的是噪音。声学创伤的主要影响表现为毛细胞静纤毛的精细机械感觉装置受损。这最终可能导致毛细胞死亡和不可逆的耳聋。关于有害声音刺激如何影响听觉感觉上皮的单个细胞成分,我们知之甚少。然而,在不同类型细胞培养中的研究表明,损伤和机械刺激可激活细胞内游离钙浓度(Ca(2+))的变化并引发细胞间钙波。因此,一个有吸引力的假设是,Ca(2+)的变化以波的形式通过柯蒂氏器中的支持细胞传播,可能构成一种基本机制,用于发出毛细胞损伤发生的信号。我们在此描述的机制对细胞外ATP表现出纳摩尔敏感性,涉及由于源自毛细胞的ATP导致的细胞间钙波的再生传播,并依赖于支持细胞中对IP(3)敏感的功能性细胞内储存。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验