Suppr超能文献

从蛋白质结构中提取的取向势能可改善天然折叠识别。

Orientational potentials extracted from protein structures improve native fold recognition.

作者信息

Buchete Nicolae-Viorel, Straub John E, Thirumalai Devarajan

机构信息

Department of Chemistry, Boston University, Boston, MA 02215, USA.

出版信息

Protein Sci. 2004 Apr;13(4):862-74. doi: 10.1110/ps.03488704.

Abstract

We develop coarse-grained, distance- and orientation-dependent statistical potentials from the growing protein structural databases. For protein structural classes (alpha, beta, and alpha/beta), a substantial number of backbone-backbone and backbone-side-chain contacts stabilize the native folds. By taking into account the importance of backbone interactions with a virtual backbone interaction center as the 21st anisotropic site, we construct a 21 x 21 interaction scheme. The new potentials are studied using spherical harmonics analysis (SHA) and a smooth, continuous version is constructed using spherical harmonic synthesis (SHS). Our approach has the following advantages: (1) The smooth, continuous form of the resulting potentials is more realistic and presents significant advantages for computational simulations, and (2) with SHS, the potential values can be computed efficiently for arbitrary coordinates, requiring only the knowledge of a few spherical harmonic coefficients. The performance of the new orientation-dependent potentials was tested using a standard database of decoy structures. The results show that the ability of the new orientation-dependent potentials to recognize native protein folds from a set of decoy structures is strongly enhanced by the inclusion of anisotropic backbone interaction centers. The anisotropic potentials can be used to develop realistic coarse-grained simulations of proteins, with direct applications to protein design, folding, and aggregation.

摘要

我们从不断增长的蛋白质结构数据库中开发了粗粒度的、依赖距离和方向的统计势。对于蛋白质结构类别(α、β和α/β),大量的主链-主链和主链-侧链接触稳定了天然折叠。通过将主链相互作用的重要性与作为第21个各向异性位点的虚拟主链相互作用中心相结合,我们构建了一个21×21的相互作用方案。使用球谐分析(SHA)对新的势进行了研究,并使用球谐合成(SHS)构建了一个平滑、连续的版本。我们的方法具有以下优点:(1)所得势的平滑、连续形式更符合实际,并且在计算模拟中具有显著优势;(II)使用SHS,仅需知道几个球谐系数,就可以针对任意坐标高效地计算势值。使用一个标准的诱饵结构数据库测试了新的依赖方向的势的性能。结果表明,通过纳入各向异性主链相互作用中心,新的依赖方向的势从一组诱饵结构中识别天然蛋白质折叠的能力得到了显著增强。各向异性势可用于开发逼真的蛋白质粗粒度模拟,并直接应用于蛋白质设计、折叠和聚集。

相似文献

6
Learning effective amino acid interactions through iterative stochastic techniques.通过迭代随机技术学习有效的氨基酸相互作用。
Proteins. 2001 Feb 15;42(3):422-31. doi: 10.1002/1097-0134(20010215)42:3<422::aid-prot120>3.0.co;2-2.

引用本文的文献

10
De novo backbone scaffolds for protein design.从头设计蛋白质的骨干支架。
Proteins. 2010 Apr;78(5):1311-25. doi: 10.1002/prot.22651.

本文引用的文献

1
Raster3D: photorealistic molecular graphics.Raster3D:逼真的分子图形。
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
7
On the design and analysis of protein folding potentials.关于蛋白质折叠势的设计与分析。
Proteins. 2000 Jul 1;40(1):71-85. doi: 10.1002/(sici)1097-0134(20000701)40:1<71::aid-prot90>3.0.co;2-3.
9
Assigning genomic sequences to CATH.将基因组序列归类到CATH。
Nucleic Acids Res. 2000 Jan 1;28(1):277-82. doi: 10.1093/nar/28.1.277.
10
The Protein Data Bank.蛋白质数据库。
Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验