Suppr超能文献

神经氨酸酶-配体相互作用的分子动力学与自由能分析

Molecular dynamics and free energy analysis of neuraminidase-ligand interactions.

作者信息

Bonnet Pascal, Bryce Richard A

机构信息

School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester M13 9PL, UK.

出版信息

Protein Sci. 2004 Apr;13(4):946-57. doi: 10.1110/ps.03129704.

Abstract

We report molecular dynamics calculations of neuraminidase in complex with an inhibitor, 4-amino-2-deoxy-2,3-didehydro-N-acetylneuraminic acid (N-DANA), with subsequent free energy analysis of binding by using a combined molecular mechanics/continuum solvent model approach. A dynamical model of the complex containing an ionized Glu119 amino acid residue is found to be consistent with experimental data. Computational analysis indicates a major van der Waals component to the inhibitor-neuraminidase binding free energy. Based on the N-DANA/neuraminidase molecular dynamics trajectory, a perturbation methodology was used to predict the binding affinity of related neuraminidase inhibitors by using a force field/Poisson-Boltzmann potential. This approach, incorporating conformational search/local minimization schemes with distance-dependent dielectric or generalized Born solvent models, correctly identifies the most potent neuraminidase inhibitor. Mutation of the key ligand four-substituent to a hydrogen atom indicates no favorable binding free energy contribution of a hydroxyl group; conversely, cationic substituents form favorable electrostatic interactions with neuraminidase. Prospects for further development of the method as an analysis and rational design tool are discussed.

摘要

我们报告了神经氨酸酶与抑制剂4-氨基-2-脱氧-2,3-二脱氢-N-乙酰神经氨酸(N-DANA)复合物的分子动力学计算结果,并随后使用分子力学/连续介质溶剂模型相结合的方法对结合自由能进行了分析。发现含有离子化谷氨酸119氨基酸残基的复合物动力学模型与实验数据一致。计算分析表明,抑制剂与神经氨酸酶结合自由能的主要成分是范德华力。基于N-DANA/神经氨酸酶分子动力学轨迹,采用微扰方法,利用力场/泊松-玻尔兹曼势预测相关神经氨酸酶抑制剂的结合亲和力。这种方法结合了构象搜索/局部最小化方案以及距离依赖介电常数或广义玻恩溶剂模型,正确地识别出了最有效的神经氨酸酶抑制剂。关键配体的四个取代基突变为氢原子表明,羟基对结合自由能没有有利贡献;相反,阳离子取代基与神经氨酸酶形成有利的静电相互作用。文中还讨论了将该方法进一步开发为分析和合理设计工具的前景。

相似文献

引用本文的文献

2
SAMPL6 host-guest challenge: binding free energies via a multistep approach.SAMPL6 主客体挑战:通过多步骤方法计算结合自由能。
J Comput Aided Mol Des. 2018 Oct;32(10):1097-1115. doi: 10.1007/s10822-018-0159-1. Epub 2018 Sep 17.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验