Bonnet Pascal, Bryce Richard A
School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester M13 9PL, UK.
J Mol Graph Model. 2005 Oct;24(2):147-56. doi: 10.1016/j.jmgm.2005.06.003.
We explore a perturbative approach to calculation of binding free energy of multiple ligands, based on a single molecular dynamics simulation of a reference ligand-receptor complex and analysis via a hybrid force field/continuum model potential. The methodology is applied to prediction of relative binding free energies of 10 Influenza neuraminidase inhibitors, using Poisson-Boltzmann and generalised Born models of implicit solvent. These single-step MM-PB/SA and MM-GB/SA approaches predict the experimentally most potent ligand as first- or second-ranked according to total binding free energy. Ranking of inhibitors displays only moderate sensitivity to the choice of reference trajectory and ligand partial charge scheme. When ranked according to total electrostatic binding free energy, correlation with experiment improves (r(2) of 0.72); this may be related to underestimated first solvation shell effects by the implicit water models. Therefore, to increase the generality of this single-step approach as part of a potential computational compound optimisation strategy, further development of the treatment of short-range solvent interactions is warranted.
我们探索了一种微扰方法,用于计算多个配体的结合自由能,该方法基于参考配体-受体复合物的单分子动力学模拟,并通过混合力场/连续介质模型势进行分析。该方法应用于预测10种流感神经氨酸酶抑制剂的相对结合自由能,使用隐式溶剂的泊松-玻尔兹曼模型和广义玻恩模型。这些单步MM-PB/SA和MM-GB/SA方法根据总结合自由能预测实验上最有效的配体为第一或第二位。抑制剂的排名对参考轨迹和配体部分电荷方案的选择仅表现出中等敏感性。当根据总静电结合自由能进行排名时,与实验的相关性提高(r(2)为0.72);这可能与隐式水模型对第一溶剂化层效应的低估有关。因此,为了增加这种单步方法作为潜在计算化合物优化策略一部分的通用性,有必要进一步发展短程溶剂相互作用的处理方法。