Suppr超能文献

GEMDOCK:一种通用的分子对接进化方法。

GEMDOCK: a generic evolutionary method for molecular docking.

作者信息

Yang Jinn-Moon, Chen Chun-Chen

机构信息

Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.

出版信息

Proteins. 2004 May 1;55(2):288-304. doi: 10.1002/prot.20035.

Abstract

We have developed an evolutionary approach for flexible ligand docking. This approval, GEMDOCK, uses a Generic Evolutionary Method for molecular DOCKing and an empirical scoring function. The former combines both discrete and continuous global search strategies with local search strategies to speed up convergence, whereas the latter results in rapid recognition of potential ligands. GEMDOCK was tested on a diverse data set of 100 protein-ligand complexes from the Protein Data Bank. In 79% of these complexes, the docked lowest energy ligand structures had root-mean-square derivations (RMSDs) below 2.0 A with respect to the corresponding crystal structures. The success rate increased to 85% if the structure water molecules were retained. We evaluated GEMDOCK on two cross-docking experiments in which each ligand of a protein ensemble was docked into each protein of the ensemble. Seventy-six percent of the docked structures had RMSDs below 2.0 A when the ligands were docked into foreign structures. We analyzed and validated GEMDOCK with respect to various search spaces and scoring functions, and found that if the scoring function was perfect, then the predicted accuracy was also essentially perfect. This study suggests that GEMDOCK is a useful tool for molecular recognition and may be used to systematically evaluate and thus improve scoring functions.

摘要

我们开发了一种用于灵活配体对接的进化方法。这种方法,即GEMDOCK,使用一种用于分子对接的通用进化方法和一个经验评分函数。前者将离散和连续的全局搜索策略与局部搜索策略相结合以加速收敛,而后者能够快速识别潜在配体。GEMDOCK在来自蛋白质数据库的100个蛋白质-配体复合物的多样数据集上进行了测试。在这些复合物中,79%的对接最低能量配体结构相对于相应的晶体结构,其均方根偏差(RMSD)低于2.0埃。如果保留结构水分子,成功率会提高到85%。我们在两个交叉对接实验中评估了GEMDOCK,其中一个蛋白质集合中的每个配体被对接至该集合中的每个蛋白质。当配体被对接至外来结构时,76%的对接结构的RMSD低于2.0埃。我们针对各种搜索空间和评分函数对GEMDOCK进行了分析和验证,发现如果评分函数是完美的,那么预测准确性也基本是完美的。这项研究表明GEMDOCK是一种用于分子识别的有用工具,可用于系统地评估并因此改进评分函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验