Suppr超能文献

一种用于全原子蛋白质环预测的分层方法。

A hierarchical approach to all-atom protein loop prediction.

作者信息

Jacobson Matthew P, Pincus David L, Rapp Chaya S, Day Tyler J F, Honig Barry, Shaw David E, Friesner Richard A

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-2240, USA.

出版信息

Proteins. 2004 May 1;55(2):351-67. doi: 10.1002/prot.10613.

Abstract

The application of all-atom force fields (and explicit or implicit solvent models) to protein homology-modeling tasks such as side-chain and loop prediction remains challenging both because of the expense of the individual energy calculations and because of the difficulty of sampling the rugged all-atom energy surface. Here we address this challenge for the problem of loop prediction through the development of numerous new algorithms, with an emphasis on multiscale and hierarchical techniques. As a first step in evaluating the performance of our loop prediction algorithm, we have applied it to the problem of reconstructing loops in native structures; we also explicitly include crystal packing to provide a fair comparison with crystal structures. In brief, large numbers of loops are generated by using a dihedral angle-based buildup procedure followed by iterative cycles of clustering, side-chain optimization, and complete energy minimization of selected loop structures. We evaluate this method by using the largest test set yet used for validation of a loop prediction method, with a total of 833 loops ranging from 4 to 12 residues in length. Average/median backbone root-mean-square deviations (RMSDs) to the native structures (superimposing the body of the protein, not the loop itself) are 0.42/0.24 A for 5 residue loops, 1.00/0.44 A for 8 residue loops, and 2.47/1.83 A for 11 residue loops. Median RMSDs are substantially lower than the averages because of a small number of outliers; the causes of these failures are examined in some detail, and many can be attributed to errors in assignment of protonation states of titratable residues, omission of ligands from the simulation, and, in a few cases, probable errors in the experimentally determined structures. When these obvious problems in the data sets are filtered out, average RMSDs to the native structures improve to 0.43 A for 5 residue loops, 0.84 A for 8 residue loops, and 1.63 A for 11 residue loops. In the vast majority of cases, the method locates energy minima that are lower than or equal to that of the minimized native loop, thus indicating that sampling rarely limits prediction accuracy. The overall results are, to our knowledge, the best reported to date, and we attribute this success to the combination of an accurate all-atom energy function, efficient methods for loop buildup and side-chain optimization, and, especially for the longer loops, the hierarchical refinement protocol.

摘要

将全原子力场(以及显式或隐式溶剂模型)应用于蛋白质同源建模任务(如侧链和环预测)仍然具有挑战性,这既是因为单个能量计算成本高昂,也是因为难以对崎岖的全原子能量表面进行采样。在这里,我们通过开发众多新算法来应对环预测问题的这一挑战,重点是多尺度和分层技术。作为评估我们环预测算法性能的第一步,我们将其应用于在天然结构中重建环的问题;我们还明确纳入晶体堆积,以便与晶体结构进行公平比较。简而言之,通过使用基于二面角的构建程序生成大量环,随后进行聚类、侧链优化以及对选定环结构进行完全能量最小化的迭代循环。我们使用迄今为止用于验证环预测方法的最大测试集来评估此方法,该测试集共有833个长度从4到12个残基的环。对于5个残基的环,相对于天然结构(使蛋白质主体而非环本身重叠)的平均/中位数主链均方根偏差(RMSD)为0.42/0.24 Å,对于8个残基的环为1.00/0.44 Å,对于11个残基的环为2.47/1.83 Å。由于少量异常值,中位数RMSD显著低于平均值;对这些失败的原因进行了详细研究,许多可归因于可滴定残基质子化状态分配错误、模拟中遗漏配体以及在少数情况下实验确定结构中可能存在的错误。当滤除数据集中这些明显问题后,对于5个残基的环,相对于天然结构的平均RMSD提高到0.43 Å,对于8个残基的环为0.84 Å,对于11个残基的环为1.63 Å。在绝大多数情况下,该方法找到的能量最小值低于或等于最小化的天然环的能量最小值,因此表明采样很少限制预测准确性。据我们所知,总体结果是迄今为止报道的最佳结果,我们将这一成功归因于准确的全原子能量函数、有效的环构建和侧链优化方法,特别是对于较长的环,归因于分层细化协议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验