Li Xin, Jacobson Matthew P, Friesner Richard A
Department of Chemistry, Columbia University, New York, New York, USA.
Proteins. 2004 May 1;55(2):368-82. doi: 10.1002/prot.20014.
We have developed a new method for predicting helix positions in globular proteins that is intended primarily for comparative modeling and other applications where high precision is required. Unlike helix packing algorithms designed for ab initio folding, we assume that knowledge is available about the qualitative placement of all helices. However, even among homologous proteins, the corresponding helices can demonstrate substantial differences in positions and orientations, and for this reason, improperly positioned helices can contribute significantly to the overall backbone root-mean-square deviation (RMSD) of comparative models. A helix packing algorithm for use in comparative modeling must obtain high precision to be useful, and for this reason we utilize an all-atom protein force field (OPLS) and a Generalized Born continuum solvent model. To reduce the computational expense associated with using a detailed, physics-based energy function, we have developed new hierarchical and multiscale algorithms for sampling the helices and flanking loops. We validate the method using a test suite of 33 cases, which are drawn from a diverse set of high-resolution crystal structures. The helix positions are reproduced with an average backbone RMSD of 0.6 A, while the average backbone RMSD of the complete loop-helix-loop region (i.e., the helix with the surrounding loops, which are also repredicted) is 1.3 A.
我们开发了一种预测球状蛋白质中螺旋位置的新方法,该方法主要用于比较建模以及其他需要高精度的应用。与为从头折叠设计的螺旋堆积算法不同,我们假设已知所有螺旋的定性位置。然而,即使在同源蛋白质中,相应的螺旋在位置和取向上也可能表现出很大差异,因此,位置不当的螺旋会对比较模型的整体主链均方根偏差(RMSD)有显著影响。用于比较建模的螺旋堆积算法必须获得高精度才有用,因此我们使用全原子蛋白质力场(OPLS)和广义玻恩连续介质溶剂模型。为了减少使用基于物理的详细能量函数所带来的计算成本,我们开发了用于对螺旋和侧翼环进行采样的新的分层和多尺度算法。我们使用一组33个案例的测试集对该方法进行验证,这些案例来自各种高分辨率晶体结构。螺旋位置的再现主链均方根偏差平均为0.6 Å,而完整的环 - 螺旋 - 环区域(即带有周围环的螺旋,这些环也会被重新预测)的主链均方根偏差平均为1.3 Å。