Van der Avert Pieter, Podkolzin Simon G, Manoilova Olga, de Winne Hendrik, Weckhuysen Bert M
Centrum voor Oppervlaktechemie en Katalyse, Departement Interfasechemie, KULeuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium.
Chemistry. 2004 Apr 2;10(7):1637-46. doi: 10.1002/chem.200305442.
The catalytic destruction of carbon tetrachloride in the presence of steam, CCl(4) + 2 H(2)O-->4 HCl + CO(2), was investigated at 200-350 degrees C over a series of lanthanide (La, Ce, Pr and Nd) and alkaline-earth metal (Mg, Ca, Sr and Ba) oxide-based catalysts with kinetic experiments, Raman spectroscopy, X-ray photoelectron spectroscopy, IR spectroscopy, X-ray diffraction, and DFT calculations. This new catalytic reaction was achieved by combining destructive adsorption of CCl(4) on a basic oxide surface and concurrent dechlorination of the resulting partially chlorinated solid by steam. The combination of the two noncatalytic reactions into a catalytic cycle provided a rare opportunity in heterogeneous catalysis for studying the nature and extent of surface participation in the overall reaction chemistry. The reaction is proposed to proceed over a terminal lattice oxygen site with stepwise donation of chlorine atoms from the hydrocarbon to the surface and formation of the gas-phase intermediate COCl(2), which is readily readsorbed at the catalyst surface to form CO(2). In a second step, the active catalyst surface is regenerated by steam with formation of gas-phase HCl. Depending on the reaction conditions, the catalytic material was found to transform dynamically from the metal oxide state to the metal oxide chloride or metal chloride state due to the bulk diffusion of oxygen and chlorine atoms. A catalyst obtained from a 10 wt % La(2)O(3)/Al(2)O(3) precursor exhibited the highest destruction rate: 0.289 g CCl(4) h(-1) g(-1) catalyst at 350 degrees C, which is higher than that of any other reported catalyst system.
在200-350℃下,采用动力学实验、拉曼光谱、X射线光电子能谱、红外光谱、X射线衍射和密度泛函理论计算等方法,研究了在一系列镧系(La、Ce、Pr和Nd)和碱土金属(Mg、Ca、Sr和Ba)氧化物基催化剂存在下,四氯化碳在蒸汽存在下的催化分解反应:CCl₄ + 2H₂O→4HCl + CO₂。这种新的催化反应是通过将四氯化碳在碱性氧化物表面的破坏性吸附与随后蒸汽对生成的部分氯化固体的脱氯反应相结合来实现的。将这两个非催化反应组合成一个催化循环,为多相催化中研究表面参与整个反应化学的性质和程度提供了一个难得的机会。该反应被认为是在终端晶格氧位点上进行的,氯原子从碳氢化合物逐步转移到表面,形成气相中间体COCl₂,COCl₂很容易再吸附在催化剂表面形成CO₂。在第二步中,活性催化剂表面通过蒸汽再生,生成气相HCl。根据反应条件,由于氧和氯原子的体相扩散,发现催化材料会从金属氧化物状态动态转变为金属氧化物氯化物或金属氯化物状态。由10 wt% La₂O₃/Al₂O₃前驱体制备的催化剂表现出最高的分解速率:在350℃下为0.289 g CCl₄ h⁻¹ g⁻¹催化剂,高于任何其他报道的催化剂体系。