Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
J Am Chem Soc. 2010 Jul 21;132(28):9701-14. doi: 10.1021/ja1030062.
An important question and hence goal in catalysis is how best to transfer the synthetic and mechanistic insights gained from the modern revolution in nanoparticle synthesis, characterization, and catalysis to prepare the next generation of improved, supported-nanoparticle heterogeneous catalysts. It is precisely this question and to-date somewhat elusive goal which are addressed by the present work. More specifically, the global hypothesis investigated herein is that the use of speciation-controlled, well-characterized, solid oxide supported-organometallic precatalysts in contact with solution will lead to the next generation of better composition, size- and shape-controlled, as well as highly active and reproducible, supported-nanoparticle heterogeneous catalysts-ones that can also be understood kinetically and mechanistically. Developed herein are eight criteria defining a prototype system for supported-nanoparticle heterogeneous catalyst formation in contact with solution. The initial prototype system explored is the precatalyst, Ir(1,5-COD)Cl/gamma-Al(2)O(3) (characterized via ICP, CO adsorption, IR, and XAFS spectroscopies), and the well-defined product, Ir(0)(n)/gamma-Al(2)O(3) (characterized by reaction stoichiometry, TEM, and XAFS). The Ir(0)(n)/gamma-Al(2)O(3) system proved to be a highly active and long-lived catalyst in the simple test reaction of cyclohexene hydrogenation and in comparison to two literature Ir(0)(n)/Al(2)O(3) heterogeneous catalysts examined under identical conditions. High activity (2.2-4.8-fold higher than that of the literature Ir(0)(n)/Al(2)O(3) catalysts tested under the same conditions) and good lifetime (> or = 220,000 total turnovers of cyclohexene hydrogenation) are observed, in part by design since only acetone solvent, cyclohexene, and H(2) are possible ligands in the resultant "weakly ligated/labile-ligand" supported nanoclusters. Significantly, the Ir(1,5-COD)Cl/gamma-Al(2)O(3) + H(2) --> Ir(0)(n)/gamma-Al(2)O(3) heterogeneous catalyst formation kinetics were also successfully monitored using the cyclohexene hydrogenation reporter reaction method previously developed and applied to solution-nanoparticle formation. The observed sigmoidal supported-nanoparticle heterogeneous catalyst formation kinetics, starting from the Ir(1,5-COD)Cl/gamma-Al(2)O(3) precatalyst, are closely fit by the two-step mechanism of slow continuous nucleation (A --> B, rate constant k(1) = 1.5(1.1) x 10(-3) h(-1)) followed by fast autocatalytic surface growth (A + B --> 2B, rate constant k(2) = 1.6(2) x 10(4) h(-1) M(-1)), where A is the Ir(1,5-COD)Cl/gamma-Al(2)O(3) precatalyst and B is the resultant Ir(0)(n)/gamma-Al(2)O(3) catalyst. The kinetics are significant in establishing the ability to monitor the formation of supported-nanoparticle heterogeneous catalysts in contact with solution. They also suggest that the nine synthetic and mechanistic insights from the two-step mechanism of nanoparticle formation in solution should now apply also to the formation of supported-nanoparticle heterogeneous catalysts in contact with solution. The results open the door for new syntheses of supported-nanoparticle heterogeneous catalysts under nontraditional, mild, and flexible conditions where supported organometallics and other precursors are in contact with solution, so that additional variables such as the solvent choice, added ligands, solution temperature, and so on can be used to control the catalyst formation steps and, ideally, the resultant supported-nanoparticle heterogeneous catalyst composition, size, and shape.
一个重要的问题,因此也是催化领域的目标,就是如何最好地将现代纳米颗粒合成、表征和催化领域的革命所带来的合成和机理见解转移到制备下一代改进的负载型纳米颗粒多相催化剂。正是这个问题以及到目前为止有些难以捉摸的目标,是本工作所关注的。更具体地说,本文所研究的全局假设是,使用形态控制、特征明确的、负载在固体氧化物上的有机金属前催化剂与溶液接触,将导致下一代具有更好组成、尺寸和形状可控以及更高活性和重现性的负载型纳米颗粒多相催化剂——这些催化剂也可以从动力学和机理上理解。本文提出了八个定义用于与溶液接触的负载型纳米颗粒多相催化剂形成的原型系统的标准。所探索的初始原型系统是前催化剂 Ir(1,5-COD)Cl/γ-Al2O3(通过 ICP、CO 吸附、IR 和 XAFS 光谱学进行表征)和明确的产物 Ir(0)(n)/γ-Al2O3(通过反应化学计量学、TEM 和 XAFS 进行表征)。Ir(0)(n)/γ-Al2O3 体系被证明是在环己烯加氢的简单测试反应中具有高活性和长寿命的催化剂,与在相同条件下研究的两种文献 Ir(0)(n)/Al2O3 多相催化剂相比。观察到高活性(比文献中在相同条件下测试的 Ir(0)(n)/Al2O3 催化剂高 2.2-4.8 倍)和良好的寿命(>或=220,000 次环己烯加氢的总转化率),部分是通过设计实现的,因为在所得的“弱配位/不稳定配体”负载纳米簇中,只有丙酮溶剂、环己烯和 H2 是可能的配体。重要的是,使用先前开发并应用于溶液纳米颗粒形成的环己烯加氢报告反应方法,也成功地监测了 Ir(1,5-COD)Cl/γ-Al2O3+H2→Ir(0)(n)/γ-Al2O3 负载型纳米催化剂形成的动力学。从 Ir(1,5-COD)Cl/γ-Al2O3 前催化剂开始的观察到的负载型纳米催化剂形成的类双曲线动力学,与缓慢连续成核的两步机制(A→B,速率常数 k1=1.5(1.1)x10(-3)h(-1))紧密吻合,随后是快速自催化表面生长(A+B→2B,速率常数 k2=1.6(2)x10(4)h(-1)M(-1)),其中 A 是 Ir(1,5-COD)Cl/γ-Al2O3 前催化剂,B 是所得的 Ir(0)(n)/γ-Al2O3 催化剂。动力学在建立能够监测负载型纳米颗粒多相催化剂在溶液中形成的能力方面具有重要意义。它们还表明,从溶液中纳米颗粒形成的两步机制中获得的九个合成和机理见解现在也应该适用于负载型纳米颗粒多相催化剂在溶液中的形成。这些结果为在非传统的、温和的和灵活的条件下进行负载型纳米颗粒多相催化剂的新合成打开了大门,在这些条件下,负载型有机金属和其他前体与溶液接触,因此可以使用溶剂选择、添加配体、溶液温度等其他变量来控制催化剂形成步骤,并且理想情况下控制负载型纳米颗粒多相催化剂的组成、尺寸和形状。