Reilly Karen T, Nordstrom Michael A, Schieber Marc H
Department of Neurobiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, NY 14642, USA.
J Neurophysiol. 2004 Aug;92(2):734-42. doi: 10.1152/jn.00027.2004. Epub 2004 Mar 31.
The ability to independently move the digits is limited by peripheral as well as central factors. A central limitation to independent finger movements might arise from the inability of the human nervous system to activate motor units (MUs) that exert force on one finger without also activating MUs that exert force on adjacent fingers. Short-term synchronization between MU pairs is thought to be the result of the two motoneurons receiving common input from last-order neuronal projections. The human flexor digitorum profundus (FDP) muscle contains four subdivisions, one for each of the fingers. We hypothesized that the distribution of MU synchrony within and between subdivisions of FDP might parallel the ability to selectively activate different functional subdivisions within FDP, and the ability to flex one digit independently of another. We found that the degree of MU synchrony indeed was not uniform among the different functional subdivisions of FDP; MUs acting on ulnar digits (d5, d4) were more synchronized than MUs acting on radial digits (d2, d3). Furthermore, synchrony was observed between MU pairs where each unit acted on a different digit and was highest when both units of a pair acted on the least-independent digits (d4, d5). This indicates that the CNS does not exert completely independent control over the different functional subdivisions of FDP. The strength of synchrony appears related to the inability to produce completely independent forces or movements with the digits. These observations reflect widespread divergence of last-order inputs within the FDP motoneuron pool, and we suggest that the organization of the CNS drive to this muscle contributes to the limited ability of humans to flex one digit in isolation from other digits.
手指独立运动的能力受到外周因素以及中枢因素的限制。手指独立运动的一个中枢限制可能源于人类神经系统无法激活那些仅对一根手指施加力而不激活对相邻手指施加力的运动单位(MU)。运动单位对之间的短期同步被认为是两个运动神经元从最后一级神经元投射接收共同输入的结果。人类的指深屈肌(FDP)包含四个细分部分,分别对应一根手指。我们假设,FDP细分部分内部以及之间的运动单位同步分布可能与选择性激活FDP内不同功能细分部分的能力以及独立于其他手指弯曲一根手指的能力平行。我们发现,运动单位同步程度在FDP的不同功能细分部分中确实并不均匀;作用于尺侧手指(d5、d4)的运动单位比作用于桡侧手指(d2、d3)的运动单位同步性更高。此外,在每个运动单位作用于不同手指的运动单位对之间观察到了同步性,并且当一对运动单位中的两个都作用于最不独立的手指(d4、d5)时同步性最高。这表明中枢神经系统(CNS)对FDP的不同功能细分部分并未施加完全独立的控制。同步性的强度似乎与无法用手指产生完全独立的力或运动有关。这些观察结果反映了FDP运动神经元池内最后一级输入的广泛差异,并且我们认为中枢神经系统对该肌肉的驱动组织导致了人类孤立于其他手指弯曲一根手指的能力有限。