Suppr超能文献

个体外在拇指肌肉和外在手指肌肉的隔室的激活。

Activation of individual extrinsic thumb muscles and compartments of extrinsic finger muscles.

机构信息

Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago, Illinois;

出版信息

J Neurophysiol. 2013 Sep;110(6):1385-92. doi: 10.1152/jn.00748.2012. Epub 2013 Jun 26.

Abstract

Mechanical and neurological couplings exist between musculotendon units of the human hand and digits. Studies have begun to understand how these muscles interact when accomplishing everyday tasks, but there are still unanswered questions regarding the control limitations of individual muscles. Using intramuscular electromyographic (EMG) electrodes, this study examined subjects' ability to individually initiate and sustain three levels of normalized muscular activity in the index and middle finger muscle compartments of extensor digitorum communis (EDC), flexor digitorum profundus (FDP), and flexor digitorum superficialis (FDS), as well as the extrinsic thumb muscles abductor pollicis longus (APL), extensor pollicis brevis (EPB), extensor pollicis longus (EPL), and flexor pollicis longus (FPL). The index and middle finger compartments each sustained activations with significantly different levels of coactivity from the other finger muscle compartments. The middle finger compartment of EDC was the exception. Only two extrinsic thumb muscles, EPL and FPL, were capable of sustaining individual activations from the other thumb muscles, at all tested activity levels. Activation of APL was achieved at 20 and 30% MVC activity levels with significantly different levels of coactivity. Activation of EPB elicited coactivity levels from EPL and APL that were not significantly different. These results suggest that most finger muscle compartments receive unique motor commands, but of the four thumb muscles, only EPL and FPL were capable of individually activating. This work is encouraging for the neural control of prosthetic limbs because these muscles and compartments may potentially serve as additional user inputs to command prostheses.

摘要

人类手部和手指的肌肌腱单位之间存在机械和神经耦合。研究已经开始了解这些肌肉在完成日常任务时如何相互作用,但对于单个肌肉的控制限制仍有未解答的问题。本研究使用肌内肌电图 (EMG) 电极,检查了受试者在伸肌肌腱 (EDC)、指深屈肌 (FDP) 和指浅屈肌 (FDS) 的索引和中指肌隔室以及外在拇指肌肉拇长展肌 (APL)、拇短伸肌 (EPB)、拇长伸肌 (EPL) 和拇长屈肌 (FPL) 中单独起始和维持三个正常肌肉活动水平的能力。每个指的肌隔室都保持与其他指肌隔室具有显著不同的协同活动水平的激活。EDC 的中指隔室是个例外。只有两个外在拇指肌肉,EPL 和 FPL,能够在所有测试的活动水平上从其他拇指肌肉中单独维持激活。APL 的激活在 20% 和 30% MVC 活动水平下达到,协同活动水平显著不同。EPB 的激活引起 EPL 和 APL 的协同活动水平,差异不显著。这些结果表明,大多数手指肌隔室接收独特的运动指令,但在四个拇指肌肉中,只有 EPL 和 FPL 能够单独激活。这项工作对假肢的神经控制是令人鼓舞的,因为这些肌肉和隔室可能潜在地作为附加的用户输入来命令假肢。

相似文献

1
Activation of individual extrinsic thumb muscles and compartments of extrinsic finger muscles.
J Neurophysiol. 2013 Sep;110(6):1385-92. doi: 10.1152/jn.00748.2012. Epub 2013 Jun 26.
2
Complex, multidimensional thumb movements generated by individual extrinsic muscles.
J Orthop Res. 2008 Sep;26(9):1289-95. doi: 10.1002/jor.20641.
5
Common input to motor units of digit flexors during multi-digit grasping.
J Neurophysiol. 2004 Dec;92(6):3210-20. doi: 10.1152/jn.00516.2004. Epub 2004 Jul 7.
6
Mechanical advantage of the thumb muscles.
J Biomech. 1998 Jun;31(6):565-70. doi: 10.1016/s0021-9290(98)00043-8.
7
Electromyographic analysis of the thumb: a study of isometric forces in pinch and grasp.
J Hand Surg Am. 1985 Mar;10(2):202-10. doi: 10.1016/s0363-5023(85)80106-4.
8
Kinematic and electromyographic responses to perturbation of a rapid grasp.
J Neurophysiol. 1987 May;57(5):1498-510. doi: 10.1152/jn.1987.57.5.1498.
10
Limited independent flexion of the thumb and fingers in human subjects.
J Physiol. 1994 Sep 15;479 ( Pt 3)(Pt 3):487-97. doi: 10.1113/jphysiol.1994.sp020312.

引用本文的文献

1
Evolution, biomechanics, and neurobiology converge to explain selective finger motor control.
Physiol Rev. 2024 Jul 1;104(3):983-1020. doi: 10.1152/physrev.00030.2023. Epub 2024 Feb 22.
2
A Musculoskeletal Model of the Hand and Wrist Capable of Simulating Functional Tasks.
IEEE Trans Biomed Eng. 2023 May;70(5):1424-1435. doi: 10.1109/TBME.2022.3217722. Epub 2023 Apr 20.
3
The neural mechanisms of manual dexterity.
Nat Rev Neurosci. 2021 Dec;22(12):741-757. doi: 10.1038/s41583-021-00528-7. Epub 2021 Oct 28.
5
Effect of User Practice on Prosthetic Finger Control With an Intuitive Myoelectric Decoder.
Front Neurosci. 2019 Sep 10;13:891. doi: 10.3389/fnins.2019.00891. eCollection 2019.
6
Extracting extensor digitorum communis activation patterns using high-density surface electromyography.
Front Physiol. 2015 Oct 6;6:279. doi: 10.3389/fphys.2015.00279. eCollection 2015.
7
Extrinsic finger and thumb muscles command a virtual hand to allow individual finger and grasp control.
IEEE Trans Biomed Eng. 2015 Jan;62(1):218-26. doi: 10.1109/TBME.2014.2344854. Epub 2014 Jul 31.
8
Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):828-36. doi: 10.1109/TNSRE.2014.2301234. Epub 2014 Jan 21.

本文引用的文献

1
Quantification of isolated muscle compartment activity in extrinsic finger muscles for potential prosthesis control sites.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4104-7. doi: 10.1109/IEMBS.2011.6091019.
2
Mechanical properties and neural control of human hand motor units.
J Physiol. 2011 Dec 1;589(Pt 23):5595-602. doi: 10.1113/jphysiol.2011.215236. Epub 2011 Oct 17.
3
Constraints for control of the human hand.
J Physiol. 2011 Dec 1;589(Pt 23):5583-93. doi: 10.1113/jphysiol.2011.217810. Epub 2011 Oct 10.
4
Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity.
IEEE Trans Neural Syst Rehabil Eng. 2009 Oct;17(5):428-37. doi: 10.1109/TNSRE.2009.2032603. Epub 2009 Sep 22.
5
Limited ability to extend the digits of the human hand independently with extensor digitorum.
J Physiol. 2009 Oct 15;587(Pt 20):4799-810. doi: 10.1113/jphysiol.2009.177964. Epub 2009 Aug 24.
6
Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording.
IEEE Trans Biomed Eng. 2009 Jan;56(1):159-71. doi: 10.1109/TBME.2008.2005942.
7
Assessment of individual finger muscle activity in the extensor digitorum communis by surface EMG.
J Neurophysiol. 2008 Dec;100(6):3225-35. doi: 10.1152/jn.90570.2008. Epub 2008 Jul 23.
9
Modulation of muscle synergy recruitment in primate grasping.
J Neurosci. 2008 Jan 23;28(4):880-92. doi: 10.1523/JNEUROSCI.2869-07.2008.
10
A comparison of surface and intramuscular myoelectric signal classification.
IEEE Trans Biomed Eng. 2007 May;54(5):847-53. doi: 10.1109/TBME.2006.889192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验