Adewuyi Adenike A, Hargrove Levi J, Kuiken Todd A
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):485-94. doi: 10.1109/TNSRE.2015.2424371. Epub 2015 May 6.
Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.
模式识别控制与来自手部外在肌肉的表面肌电图(EMG)相结合,已显示出在控制经桡骨截肢者的多种假肢功能方面具有巨大潜力。然而,当将这种控制方法应用于部分手部截肢者时,需要进行调整,因为这些患者既有功能正常的手腕,又有信息丰富的手部内在残余肌肉。我们证明,将来自手部内在和外在肌肉的肌电图数据相结合来对手部抓握和手指运动进行分类,能够解码多达19种手部抓握和单个手指运动,非截肢者的准确率为96%,部分手部截肢者的准确率为85%。我们评估了在七个不同手腕位置下三种手部运动的实时模式识别控制。我们发现,与仅使用在中立手腕位置收集的外在肌肉肌电图数据训练的系统相比,使用在静态和动态改变手腕位置时收集的内在和外在肌肉肌电图数据训练的系统,部分手部截肢者的完成率从73%提高到了96%,非截肢者的完成率从88%提高到了100%。我们的研究表明,纳入内在肌肉肌电图数据和手腕运动可以显著提高模式识别控制在部分手部假肢控制应用中的鲁棒性。