Suppr超能文献

用于改进模式识别控制的手部内在肌和外在肌肌电图分析

An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

作者信息

Adewuyi Adenike A, Hargrove Levi J, Kuiken Todd A

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):485-94. doi: 10.1109/TNSRE.2015.2424371. Epub 2015 May 6.

Abstract

Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

摘要

模式识别控制与来自手部外在肌肉的表面肌电图(EMG)相结合,已显示出在控制经桡骨截肢者的多种假肢功能方面具有巨大潜力。然而,当将这种控制方法应用于部分手部截肢者时,需要进行调整,因为这些患者既有功能正常的手腕,又有信息丰富的手部内在残余肌肉。我们证明,将来自手部内在和外在肌肉的肌电图数据相结合来对手部抓握和手指运动进行分类,能够解码多达19种手部抓握和单个手指运动,非截肢者的准确率为96%,部分手部截肢者的准确率为85%。我们评估了在七个不同手腕位置下三种手部运动的实时模式识别控制。我们发现,与仅使用在中立手腕位置收集的外在肌肉肌电图数据训练的系统相比,使用在静态和动态改变手腕位置时收集的内在和外在肌肉肌电图数据训练的系统,部分手部截肢者的完成率从73%提高到了96%,非截肢者的完成率从88%提高到了100%。我们的研究表明,纳入内在肌肉肌电图数据和手腕运动可以显著提高模式识别控制在部分手部假肢控制应用中的鲁棒性。

相似文献

引用本文的文献

4

本文引用的文献

3
Effect of arm position on the prediction of kinematics from EMG in amputees.手臂位置对假肢患者肌电预测运动学的影响。
Med Biol Eng Comput. 2013 Feb;51(1-2):143-51. doi: 10.1007/s11517-012-0979-4. Epub 2012 Oct 23.
5
Restoration of pinch in intrinsic muscles of the hand.恢复手部固有肌的捏力。
Hand Clin. 2012 Feb;28(1):45-51. doi: 10.1016/j.hcl.2011.10.002.
6
The interosseous muscles: the foundation of hand function.骨间肌:手部功能的基础。
Hand Clin. 2012 Feb;28(1):9-12. doi: 10.1016/j.hcl.2011.09.005.
7
Resolving the limb position effect in myoelectric pattern recognition.解决肌电模式识别中的肢体位置效应。
IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):644-51. doi: 10.1109/TNSRE.2011.2163529. Epub 2011 Aug 15.
8
Online myoelectric control of a dexterous hand prosthesis by transradial amputees.经桡骨截肢者的灵巧手假肢在线肌电控制。
IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):260-70. doi: 10.1109/TNSRE.2011.2108667. Epub 2011 Jan 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验