Suppr超能文献

酵母中Swi6的体内动力学:异染色质随机模型的证据

In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin.

作者信息

Cheutin Thierry, Gorski Stanislaw A, May Karen M, Singh Prim B, Misteli Tom

机构信息

National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Mol Cell Biol. 2004 Apr;24(8):3157-67. doi: 10.1128/MCB.24.8.3157-3167.2004.

Abstract

The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe, the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6(-) and swi6(+) strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast.

摘要

从裂殖酵母到哺乳动物,着丝粒周围异染色质转录沉默的机制是保守的。沉默的基因组区域以组蛋白H3的表观遗传甲基化为标记,组蛋白H3作为结构异染色质蛋白的结合位点。在裂殖酵母粟酒裂殖酵母中,主要的结构异染色质蛋白是Swi6。为了深入了解Swi6在体内的功能,我们研究了其在活酵母细胞核中的动态变化。我们证明,与哺乳动物细胞不同,酵母异染色质结构域在细胞核内经历快速、大规模的运动。与哺乳动物细胞的情况类似,Swi6不会永久地与这些染色质结构域结合,而是仅短暂地结合常染色质和异染色质。Swi6的结合动态取决于生长状态以及沉默因子Clr4和Rik1,但不依赖于Clr1、Clr2或Clr3。通过比较swi6(-)和swi6(+)菌株中突变Swi6蛋白的动力学,我们证明通过染色体阴影结构域的同型蛋白质-蛋白质相互作用在体内稳定了Swi6与染色质的结合。动力学建模允许对停留时间进行定量估计,并表明在异染色质中至少存在两个动力学上不同的Swi6群体。观察到的Swi6结合动态与异染色质的随机模型一致,并表明从哺乳动物到酵母,异染色质蛋白结合特性具有进化保守性。

相似文献

1
In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin.
Mol Cell Biol. 2004 Apr;24(8):3157-67. doi: 10.1128/MCB.24.8.3157-3167.2004.
2
Biochemical Basis for Distinct Roles of the Heterochromatin Proteins Swi6 and Chp2.
J Mol Biol. 2017 Nov 24;429(23):3666-3677. doi: 10.1016/j.jmb.2017.09.012. Epub 2017 Sep 20.
5
Interaction of APC/C-E3 ligase with Swi6/HP1 and Clr4/Suv39 in heterochromatin assembly in fission yeast.
J Biol Chem. 2009 Mar 13;284(11):7165-76. doi: 10.1074/jbc.M806461200. Epub 2008 Dec 30.
6
Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8998-9003. doi: 10.1073/pnas.0813063106. Epub 2009 May 14.
7
Heterochromatin protein 1 homologue Swi6 acts in concert with Ers1 to regulate RNAi-directed heterochromatin assembly.
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6159-64. doi: 10.1073/pnas.1116972109. Epub 2012 Apr 2.
8
SUMO modification is involved in the maintenance of heterochromatin stability in fission yeast.
Mol Cell. 2005 Sep 16;19(6):817-28. doi: 10.1016/j.molcel.2005.08.021.
9
H3K9 methylation extends across natural boundaries of heterochromatin in the absence of an HP1 protein.
EMBO J. 2015 Nov 12;34(22):2789-803. doi: 10.15252/embj.201591320. Epub 2015 Oct 5.
10
Fission yeast Arp6 is required for telomere silencing, but functions independently of Swi6.
Nucleic Acids Res. 2004 Feb 2;32(2):736-41. doi: 10.1093/nar/gkh234. Print 2004.

引用本文的文献

5
Impact of 1,6-hexanediol on Schizosaccharomyces pombe genome stability.
G3 (Bethesda). 2023 Aug 9;13(8). doi: 10.1093/g3journal/jkad123.
6
The molecular basis of heterochromatin assembly and epigenetic inheritance.
Mol Cell. 2023 Jun 1;83(11):1767-1785. doi: 10.1016/j.molcel.2023.04.020. Epub 2023 May 18.
8
Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast.
Genes Genomics. 2022 Mar;44(3):359-367. doi: 10.1007/s13258-021-01203-y. Epub 2022 Jan 16.
10
A multi-layered structure of the interphase chromocenter revealed by proximity-based biotinylation.
Nucleic Acids Res. 2020 May 7;48(8):4161-4178. doi: 10.1093/nar/gkaa145.

本文引用的文献

1
Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy.
Methods Enzymol. 2004;375:393-414. doi: 10.1016/s0076-6879(03)75025-3.
2
Effects of tethering HP1 to euchromatic regions of the Drosophila genome.
Development. 2003 May;130(9):1817-24. doi: 10.1242/dev.00405.
3
Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1.
Biochem Biophys Res Commun. 2003 Feb 7;301(2):287-92. doi: 10.1016/s0006-291x(02)03021-8.
4
Maintenance of stable heterochromatin domains by dynamic HP1 binding.
Science. 2003 Jan 31;299(5607):721-5. doi: 10.1126/science.1078572.
5
Modulation of heterochromatin protein 1 dynamics in primary Mammalian cells.
Science. 2003 Jan 31;299(5607):719-21. doi: 10.1126/science.1078694.
6
HP1: facts, open questions, and speculation.
J Struct Biol. 2002 Oct-Dec;140(1-3):10-6. doi: 10.1016/s1047-8477(02)00536-1.
8
Does heterochromatin protein 1 always follow code?
Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4(Suppl 4):16462-9. doi: 10.1073/pnas.162371699. Epub 2002 Jul 31.
9
Competition between histone H1 and HMGN proteins for chromatin binding sites.
EMBO Rep. 2002 Aug;3(8):760-6. doi: 10.1093/embo-reports/kvf156. Epub 2002 Jul 15.
10
Histone methylation: dynamic or static?
Cell. 2002 Jun 28;109(7):801-6. doi: 10.1016/s0092-8674(02)00798-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验