Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Mol Cell. 2023 Jun 1;83(11):1767-1785. doi: 10.1016/j.molcel.2023.04.020. Epub 2023 May 18.
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
异染色质在基因调控、基因组完整性和重复 DNA 元件的沉默中起着至关重要的作用。组蛋白修饰对于异染色质结构域的建立至关重要,这是通过组蛋白修饰酶招募到核小体起始点来实现的。这导致了组蛋白 H3 赖氨酸 9 甲基化(H3K9me)的沉积,为异染色质蛋白的高浓度区域的形成和异染色质在扩展区域的传播提供了基础。此外,异染色质可以在细胞分裂过程中以自我模板化的方式进行表观遗传遗传。这涉及到一种“读写”机制,其中预先存在的修饰组蛋白,如三甲基化的 H3K9(H3K9me3),支持组蛋白甲基转移酶与染色质的关联,从而促进 H3K9me 的进一步沉积。最近的研究表明,H3K9me3 及其相关因子的临界密度对于异染色质结构域在多个世代中的传播是必要的。在这篇综述中,我讨论了强调修饰组蛋白对于表观遗传遗传重要性的关键实验。