Suppr超能文献

可持续性:类别学习的网络模型。

SUSTAIN: a network model of category learning.

作者信息

Love Bradley C, Medin Douglas L, Gureckis Todd M

机构信息

Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Psychol Rev. 2004 Apr;111(2):309-32. doi: 10.1037/0033-295X.111.2.309.

Abstract

SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

摘要

SUSTAIN(监督与非监督分层自适应增量网络)是一种关于人类如何从示例中学习类别知识的模型。SUSTAIN最初假定一种简单的类别结构。如果简单的解决方案被证明是不充分的,并且SUSTAIN遇到一个令人惊讶的事件(例如,被告知蝙蝠是哺乳动物而不是鸟类),SUSTAIN会引入一个额外的聚类来表征这个令人惊讶的事件。新引入的聚类可用于解释未来的事件,并且自身可以演变成原型-吸引子-规则。SUSTAIN对类别子结构的发现不仅受到世界结构的影响,还受到学习任务的性质和学习者目标的影响。SUSTAIN成功地将类别学习模型扩展到推理学习、非监督学习、类别构建以及识别学习比分类学习更快的情境研究中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验