Er Meng Joo, Zhou Yi
School of Electrical and Electronic Engineering, Nanyang Technological University, S1, 50 Nanyang Ave, Singapore 639798, Singapore.
Neural Netw. 2008 Dec;21(10):1556-66. doi: 10.1016/j.neunet.2008.06.007. Epub 2008 Jun 25.
In this paper, a novel approach termed Enhanced Dynamic Self-Generated Fuzzy Q-Learning (EDSGFQL) for automatically generating Fuzzy Inference Systems (FISs) is presented. In the EDSGFQL approach, structure identification and parameter estimations of FISs are achieved via Unsupervised Learning (UL) (including Reinforcement Learning (RL)). Instead of using Supervised Learning (SL), UL clustering methods are adopted for input space clustering when generating FISs. At the same time, structure and preconditioning parts of a FIS are generated in a RL manner in that fuzzy rules are adjusted and deleted according to reinforcement signals. The proposed EDSGFQL methodologies can automatically create, delete and adjust fuzzy rules dynamically. Simulation studies on wall-following and obstacle avoidance tasks by a mobile robot show that the proposed approach is superior in generating efficient FISs.
本文提出了一种用于自动生成模糊推理系统(FIS)的新方法,称为增强动态自生成模糊Q学习(EDSGFQL)。在EDSGFQL方法中,FIS的结构识别和参数估计是通过无监督学习(UL)(包括强化学习(RL))来实现的。在生成FIS时,不使用监督学习(SL),而是采用UL聚类方法对输入空间进行聚类。同时,FIS的结构和预处理部分以RL方式生成,即根据强化信号调整和删除模糊规则。所提出的EDSGFQL方法可以动态地自动创建、删除和调整模糊规则。移动机器人在壁面跟随和避障任务上的仿真研究表明,该方法在生成高效FIS方面具有优越性。