Kwon Mijung, Scholey Jonathan M
Department of Pediatric Oncology, The Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
Trends Cell Biol. 2004 Apr;14(4):194-205. doi: 10.1016/j.tcb.2004.03.003.
Drosophila melanogaster is an excellent model for studying mitosis. Syncytial embryos are amenable to time-lapse imaging of hundreds of synchronously dividing spindles, allowing the quantitation of spindle and chromosome dynamics with unprecedented fidelity. Other Drosophila cell types, including neuroblasts, cultured cells, spermatocytes and oocytes, contain spindles that differ in their design, providing cells amenable to different types of experiments and allowing identification of common core mechanisms. The function of mitotic proteins can be studied using mutants, inhibitor microinjection and RNA interference (RNAi) to identify the full inventory of mitotic proteins encoded by the genome. Here, we review recent advances in understanding how ensembles of mitotic proteins coordinate spindle assembly and chromosome motion in this system.
黑腹果蝇是研究有丝分裂的优秀模型。合胞体胚胎适合对数百个同步分裂的纺锤体进行延时成像,从而以前所未有的保真度对纺锤体和染色体动态进行定量分析。其他果蝇细胞类型,包括神经母细胞、培养细胞、精母细胞和卵母细胞,含有设计不同的纺锤体,为不同类型的实验提供了适用细胞,并有助于识别共同的核心机制。可以使用突变体、抑制剂显微注射和RNA干扰(RNAi)来研究有丝分裂蛋白的功能,以确定基因组编码的有丝分裂蛋白的完整清单。在这里,我们综述了在理解有丝分裂蛋白组合如何在该系统中协调纺锤体组装和染色体运动方面的最新进展。