Suppr超能文献

电纺丝和蛋白质微图案化产生的“人工有丝分裂纺锤体”支持驱动蛋白包被珠的双向运输。

"Artificial mitotic spindle" generated by dielectrophoresis and protein micropatterning supports bidirectional transport of kinesin-coated beads.

机构信息

Department of Bioengineering, The Pennsylvania State University, University Park, 16802, USA.

出版信息

Integr Biol (Camb). 2011 Jan;3(1):57-64. doi: 10.1039/c0ib00065e. Epub 2010 Oct 29.

Abstract

The mitotic spindle is a dynamic assembly of microtubules and microtubule-associated proteins that controls the directed movement of chromosomes during cell division. Because proper segregation of the duplicated genome requires that each daughter cell receives precisely one copy of each chromosome, numerous overlapping mechanisms have evolved to ensure that every chromosome is transported to the cell equator during metaphase. However, due to the inherent redundancy in this system, cellular studies using gene knockdowns or small molecule inhibitors have an inherent limit in defining the sufficiency of precise molecular mechanisms as well as quantifying aspects of their mechanical performance. Thus, there exists a need for novel experimental approaches that reconstitute important aspects of the mitotic spindle in vitro. Here, we show that by microfabricating Cr electrodes on quartz substrates and micropatterning proteins on the electrode surfaces, AC electric fields can be used to assemble opposed bundles of aligned and uniformly oriented microtubules as found in the mitotic spindle. By immobilizing microtubule ends on each electrode, analogous to anchoring at centrosomes, solutions of motor or microtubule binding proteins can be introduced and their resulting dynamics analyzed. Using this "artificial mitotic spindle" we show that beads functionalized with plus-end kinesin motors move in an oscillatory manner analogous to the movements of chromosomes and severed chromosome arms during metaphase. Hence, features of directional instability, an established characteristic of metaphase chromosome dynamics, can be reconstituted in vitro using a pair of uniformly oriented microtubule bundles and a plus-end kinesin functionalized bead.

摘要

有丝分裂纺锤体是微管和微管相关蛋白的动态组装体,它控制着染色体在细胞分裂过程中的定向运动。由于复制基因组的正确分离要求每个子细胞恰好收到每个染色体的一份拷贝,因此已经进化出许多重叠的机制来确保在中期将每个染色体运送到细胞赤道。然而,由于该系统内在的冗余性,使用基因敲低或小分子抑制剂的细胞研究在定义精确分子机制的充分性以及量化其机械性能方面存在固有限制。因此,需要新的实验方法来在体外重建有丝分裂纺锤体的重要方面。在这里,我们展示了通过在石英基板上微制造 Cr 电极并在电极表面上微图案化蛋白质,可以使用交流电场来组装在有丝分裂纺锤体中发现的对向束排列和均匀取向的微管。通过将微管末端固定在每个电极上,类似于在中心体处的锚定,可以引入微管结合蛋白或马达蛋白的溶液,并分析其结果动力学。使用这种“人工有丝分裂纺锤体”,我们表明用正极向驱动蛋白功能化的珠子以类似于中期染色体和切断的染色体臂的运动方式进行振荡运动。因此,可以使用一对均匀取向的微管束和正极向驱动蛋白功能化的珠子在体外重建定向不稳定性的特征,这是中期染色体动力学的一个既定特征。

相似文献

2
3
Mechanisms of mitotic spindle assembly and function.
Int Rev Cytol. 2008;265:111-58. doi: 10.1016/S0074-7696(07)65003-7.
4
The metaphase spindle at steady state - Mechanism and functions of microtubule poleward flux.
Semin Cell Dev Biol. 2021 Sep;117:99-117. doi: 10.1016/j.semcdb.2021.05.016. Epub 2021 May 28.
6
Assessment of Spindle Shape Control by Spindle Poleward Flux Measurements and FRAP Bulk Analysis.
Methods Mol Biol. 2023;2604:113-125. doi: 10.1007/978-1-0716-2867-6_9.
7
Microtubule-sliding modules based on kinesins EG5 and PRC1-dependent KIF4A drive human spindle elongation.
Dev Cell. 2021 May 3;56(9):1253-1267.e10. doi: 10.1016/j.devcel.2021.04.005. Epub 2021 Apr 27.
9
Assembly pathway of the anastral Drosophila oocyte meiosis I spindle.
J Cell Sci. 2005 Apr 15;118(Pt 8):1745-55. doi: 10.1242/jcs.02304. Epub 2005 Mar 29.
10
The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding.
Nat Cell Biol. 2009 Jun;11(6):717-23. doi: 10.1038/ncb1877. Epub 2009 May 10.

引用本文的文献

1
Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network.
Sci Rep. 2022 Feb 14;12(1):2462. doi: 10.1038/s41598-022-06255-y.
2
Electro-acoustic behavior of the mitotic spindle: a semi-classical coarse-grained model.
PLoS One. 2014 Jan 30;9(1):e86501. doi: 10.1371/journal.pone.0086501. eCollection 2014.
3
Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts.
PLoS Biol. 2011 Dec;9(12):e1001225. doi: 10.1371/journal.pbio.1001225. Epub 2011 Dec 27.

本文引用的文献

1
Emerging functions of force-producing kinetochore motors.
Cell Cycle. 2010 Feb 15;9(4):715-9. doi: 10.4161/cc.9.4.10763. Epub 2010 Mar 2.
2
The distribution of polar ejection forces determines the amplitude of chromosome directional instability.
Curr Biol. 2009 May 26;19(10):807-15. doi: 10.1016/j.cub.2009.04.036. Epub 2009 May 14.
3
Surface-bound casein modulates the adsorption and activity of kinesin on SiO2 surfaces.
Biophys J. 2009 Apr 22;96(8):3305-18. doi: 10.1016/j.bpj.2008.12.3960.
4
Neutravidin micropatterning by deep UV irradiation.
Lab Chip. 2008 Oct;8(10):1745-7. doi: 10.1039/b802762e. Epub 2008 Aug 13.
5
Microtubule alignment and manipulation using AC electrokinetics.
Small. 2008 Sep;4(9):1371-81. doi: 10.1002/smll.200701088.
6
The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment.
Dev Cell. 2008 Feb;14(2):252-62. doi: 10.1016/j.devcel.2007.11.014.
7
Microtubule assembly dynamics at the nanoscale.
Curr Biol. 2007 Sep 4;17(17):1445-55. doi: 10.1016/j.cub.2007.07.011. Epub 2007 Aug 2.
8
Cooperative mechanisms of mitotic spindle formation.
J Cell Sci. 2007 May 15;120(Pt 10):1717-22. doi: 10.1242/jcs.03442.
9
Targeted anti-mitotic therapies: can we improve on tubulin agents?
Nat Rev Cancer. 2007 Feb;7(2):107-17. doi: 10.1038/nrc2049.
10
Assembly dynamics of microtubules at molecular resolution.
Nature. 2006 Aug 10;442(7103):709-12. doi: 10.1038/nature04928. Epub 2006 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验