Horsefield Rob, Iwata So, Byrne Bernadette
Department of Biological Sciences, Imperial College London, SW7 2AZ, UK.
Curr Protein Pept Sci. 2004 Apr;5(2):107-18. doi: 10.2174/1389203043486847.
The super-macromolecular complex, succinate:quinone oxidoreductase (SQR, Complex II, succinate dehydrogenase) couples the oxidation of succinate in the matrix / cytoplasm to the reduction of quinone in the membrane. This function directly connects the Krebs cycle and the aerobic respiratory chain. Until the recent first report of the structure of SQR from Escherichia coli (E. coli) the structure-function relationships in SQR have been inferred from the structures of the homologous QFR, which catalyses the same reaction in the opposite direction. The structure of SQR from E. coli, analogous to the mitochondrial respiratory Complex II, has provided new insight into SQR's molecular design and mechanism, revealing the electron transport pathway through the enzyme. Comparison of the structures of SQR, QFR and other related flavoproteins shows how common amino acid residues at the interface of two domains facilitate the inter-conversion of succinate and fumarate. Additionally, the structure has provided a possible explanation as to why certain organisms utilise both SQR and QFR despite the fact that both can catalyse the inter-conversion of succinate and fumarate, in vitro and in vivo. Here we review how this structure has advanced our knowledge of this important enzyme and compare the structural information to other members of the Complex II superfamily and related flavoproteins.
超高分子量复合物,琥珀酸:醌氧化还原酶(SQR,复合物II,琥珀酸脱氢酶)将基质/细胞质中琥珀酸的氧化与膜中醌的还原偶联起来。该功能直接连接了三羧酸循环和有氧呼吸链。直到最近首次报道了来自大肠杆菌(E. coli)的SQR的结构,SQR中的结构-功能关系一直是从同源的QFR的结构推断而来,QFR在相反方向催化相同的反应。来自大肠杆菌的SQR的结构,类似于线粒体呼吸复合物II,为SQR的分子设计和机制提供了新的见解,揭示了通过该酶的电子传递途径。SQR、QFR和其他相关黄素蛋白结构的比较显示了两个结构域界面处常见的氨基酸残基如何促进琥珀酸和延胡索酸的相互转化。此外,该结构还为为什么某些生物体同时利用SQR和QFR提供了一种可能的解释,尽管事实上两者在体外和体内都能催化琥珀酸和延胡索酸的相互转化。在这里,我们回顾了这个结构如何推进了我们对这种重要酶的认识,并将结构信息与复合物II超家族的其他成员和相关黄素蛋白进行了比较。