Suppr超能文献

确定一个方向:大肠杆菌复合物II酶中的电子转移与催化作用

Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes.

作者信息

Maklashina Elena, Cecchini Gary, Dikanov Sergei A

机构信息

Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.

出版信息

Biochim Biophys Acta. 2013 May;1827(5):668-78. doi: 10.1016/j.bbabio.2013.01.010. Epub 2013 Feb 8.

Abstract

There are two homologous membrane-bound enzymes in Escherichia coli that catalyze reversible conversion between succinate/fumarate and quinone/quinol. Succinate:ubiquinone reductase (SQR) is a component of aerobic respiratory chains, whereas quinol:fumarate reductase (QFR) utilizes menaquinol to reduce fumarate in a final step of anaerobic respiration. Although, both protein complexes are capable of supporting bacterial growth on either minimal succinate or fumarate media, the enzymes are more proficient in their physiological directions. Here we evaluate factors that may underlie this catalytic bias. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.

摘要

大肠杆菌中有两种同源的膜结合酶,它们催化琥珀酸/延胡索酸与醌/氢醌之间的可逆转化。琥珀酸:泛醌还原酶(SQR)是有氧呼吸链的一个组成部分,而氢醌:延胡索酸还原酶(QFR)在无氧呼吸的最后一步利用甲基萘醌还原延胡索酸。虽然这两种蛋白质复合物都能够支持细菌在最低限度的琥珀酸或延胡索酸培养基上生长,但这些酶在其生理方向上表现得更为出色。在这里,我们评估了可能导致这种催化偏向的因素。本文是名为“呼吸复合物II:在细胞生理学和疾病中的作用”的特刊的一部分。

相似文献

1
Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes.
Biochim Biophys Acta. 2013 May;1827(5):668-78. doi: 10.1016/j.bbabio.2013.01.010. Epub 2013 Feb 8.
2
The quinone-binding and catalytic site of complex II.
Biochim Biophys Acta. 2010 Dec;1797(12):1877-82. doi: 10.1016/j.bbabio.2010.02.015. Epub 2010 Feb 20.
3
A threonine on the active site loop controls transition state formation in Escherichia coli respiratory complex II.
J Biol Chem. 2008 May 30;283(22):15460-8. doi: 10.1074/jbc.M801372200. Epub 2008 Apr 2.
5
The di-heme family of respiratory complex II enzymes.
Biochim Biophys Acta. 2013 May;1827(5):679-87. doi: 10.1016/j.bbabio.2013.02.012. Epub 2013 Mar 4.
6
Electroneutral and electrogenic catalysis by dihaem-containing succinate:quinone oxidoreductases.
Biochem Soc Trans. 2008 Oct;36(Pt 5):996-1000. doi: 10.1042/BST0360996.
7
Geometric restraint drives on- and off-pathway catalysis by the Escherichia coli menaquinol:fumarate reductase.
J Biol Chem. 2011 Jan 28;286(4):3047-56. doi: 10.1074/jbc.M110.192849. Epub 2010 Nov 23.
8
Succinate: quinone oxidoreductases: new insights from X-ray crystal structures.
Biochim Biophys Acta. 2000 Aug 15;1459(2-3):422-31. doi: 10.1016/s0005-2728(00)00180-8.

引用本文的文献

2
Impaired Succinate Oxidation Prevents Growth and Influences Drug Susceptibility in Mycobacterium tuberculosis.
mBio. 2022 Aug 30;13(4):e0167222. doi: 10.1128/mbio.01672-22. Epub 2022 Jul 20.
4
Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in .
Front Cell Infect Microbiol. 2021 Jan 11;10:611683. doi: 10.3389/fcimb.2020.611683. eCollection 2020.
6
The assembly of succinate dehydrogenase: a key enzyme in bioenergetics.
Cell Mol Life Sci. 2019 Oct;76(20):4023-4042. doi: 10.1007/s00018-019-03200-7. Epub 2019 Jun 24.
7
Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum.
PLoS One. 2019 May 21;14(5):e0217281. doi: 10.1371/journal.pone.0217281. eCollection 2019.
8
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction.
Biochem J. 2017 Nov 16;474(23):3935-3950. doi: 10.1042/BCJ20170377.
9
Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions.
Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.TBTB2-0014-2016.

本文引用的文献

4
Structural basis for malfunction in complex II.
J Biol Chem. 2012 Oct 12;287(42):35430-35438. doi: 10.1074/jbc.R112.408419. Epub 2012 Aug 17.
5
Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions.
J Biol Chem. 2012 Aug 3;287(32):27255-64. doi: 10.1074/jbc.M112.374629. Epub 2012 Jun 11.
6
Crystal structure of mitochondrial quinol-fumarate reductase from the parasitic nematode Ascaris suum.
J Biochem. 2012 Jun;151(6):589-92. doi: 10.1093/jb/mvs051. Epub 2012 May 9.
7
A rapid and robust method for selective isotope labeling of proteins.
Methods. 2011 Dec;55(4):370-8. doi: 10.1016/j.ymeth.2011.08.019. Epub 2011 Sep 8.
9
Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster.
J Biol Chem. 2011 Apr 8;286(14):12756-65. doi: 10.1074/jbc.M110.209874. Epub 2011 Feb 10.
10
The quinone-binding and catalytic site of complex II.
Biochim Biophys Acta. 2010 Dec;1797(12):1877-82. doi: 10.1016/j.bbabio.2010.02.015. Epub 2010 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验