Suppr超能文献

果蝇翅片上spalt基因表达受Decapentaplegic信号通路调控。

Regulation of spalt expression in the Drosophila wing blade in response to the Decapentaplegic signaling pathway.

作者信息

Barrio Rosa, de Celis Jose F

机构信息

Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

出版信息

Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6021-6. doi: 10.1073/pnas.0401590101. Epub 2004 Apr 12.

Abstract

Pattern formation depends on the acquisition of precise cellular identities due to the differential expression of transcription factors. Enhancers within regulatory regions integrate the positive and negative regulatory signals directing gene transcription. Here, we analyze the enhancer that drives expression of the Drosophila gene spalt in the wing blade. This enhancer integrates positive signals, mediated by the Decapentaplegic signaling effector protein Medea, with the repressor activity of Brinker. The enhancer functions in the absence of binding sites for the wing-specific factor Scalloped. The molecular analysis of this enhancer indicates that there are additional factors yet unknown involved in the activation of spalt in the wing blade and that the mechanism of repression by Brinker does not rely on competition with Mad-Medea overlapping sites. The comparisons with other enhancers that respond to Decapentaplegic suggest that there are different possibilities to integrate the positive and negative inputs triggered by this signaling pathway.

摘要

模式形成依赖于由于转录因子的差异表达而获得精确的细胞身份。调控区域内的增强子整合指导基因转录的正负调控信号。在这里,我们分析驱动果蝇基因spalt在翅片中表达的增强子。该增强子将由Decapentaplegic信号效应蛋白Medea介导的正信号与Brinker的抑制活性整合在一起。该增强子在没有翅特异性因子Scalloped结合位点的情况下发挥作用。对该增强子的分子分析表明,在翅片中激活spalt还涉及其他未知因子,并且Brinker的抑制机制不依赖于与Mad-Medea重叠位点的竞争。与其他对Decapentaplegic有反应的增强子的比较表明,整合该信号通路触发的正负输入有不同的可能性。

相似文献

1
Regulation of spalt expression in the Drosophila wing blade in response to the Decapentaplegic signaling pathway.
Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6021-6. doi: 10.1073/pnas.0401590101. Epub 2004 Apr 12.
4
Regulation of decapentaplegic expression during Drosophila wing veins pupal development.
Mech Dev. 2006 Mar;123(3):241-51. doi: 10.1016/j.mod.2005.12.002. Epub 2006 Jan 18.
5
brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila.
Development. 2004 May;131(9):2113-24. doi: 10.1242/dev.01100. Epub 2004 Apr 8.
7
Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing.
Mech Dev. 2000 Mar 1;91(1-2):31-41. doi: 10.1016/s0925-4773(99)00261-0.

引用本文的文献

1
Reactive oxygen species activate the Drosophila TNF receptor Wengen for damage-induced regeneration.
EMBO J. 2024 Sep;43(17):3604-3626. doi: 10.1038/s44318-024-00155-9. Epub 2024 Jul 17.
2
Bone morphogenetic protein signaling: the pathway and its regulation.
Genetics. 2024 Feb 7;226(2). doi: 10.1093/genetics/iyad200.
3
Distal-less and spalt are distal organisers of pierid wing patterns.
Evodevo. 2022 Jun 3;13(1):12. doi: 10.1186/s13227-022-00197-2.
5
Parallel evolution of a splicing program controlling neuronal excitability in flies and mammals.
Sci Adv. 2022 Jan 28;8(4):eabk0445. doi: 10.1126/sciadv.abk0445.
6
Systemic and local effect of the Drosophila headcase gene and its role in stress protection of Adult Progenitor Cells.
PLoS Genet. 2021 Feb 8;17(2):e1009362. doi: 10.1371/journal.pgen.1009362. eCollection 2021 Feb.
7
Patterning and growth control in vivo by an engineered GFP gradient.
Science. 2020 Oct 16;370(6514):321-327. doi: 10.1126/science.abb8205.
10
Growth and size control during development.
Open Biol. 2017 Nov;7(11). doi: 10.1098/rsob.170190.

本文引用的文献

1
Pattern formation in the Drosophila wing: The development of the veins.
Bioessays. 2003 May;25(5):443-51. doi: 10.1002/bies.10258.
2
Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient.
Cell. 2003 Apr 18;113(2):221-33. doi: 10.1016/s0092-8674(03)00241-1.
3
Genetic requirements of vestigial in the regulation of Drosophila wing development.
Development. 2003 Jan;130(1):197-208. doi: 10.1242/dev.00187.
4
Nuclear interpretation of Dpp signaling in Drosophila.
EMBO J. 2001 Jul 2;20(13):3298-305. doi: 10.1093/emboj/20.13.3298.
5
Direct competition between Brinker and Drosophila Mad in Dpp target gene transcription.
EMBO Rep. 2001 Apr;2(4):298-305. doi: 10.1093/embo-reports/kve068.
6
Control of a genetic regulatory network by a selector gene.
Science. 2001 May 11;292(5519):1164-7. doi: 10.1126/science.1058312. Epub 2001 Apr 12.
7
Repression of dpp targets by binding of brinker to mad sites.
J Biol Chem. 2001 May 25;276(21):18216-22. doi: 10.1074/jbc.M101365200. Epub 2001 Mar 21.
8
9
Direct transcriptional control of the Dpp target omb by the DNA binding protein Brinker.
EMBO J. 2000 Nov 15;19(22):6162-72. doi: 10.1093/emboj/19.22.6162.
10
Schnurri mediates Dpp-dependent repression of brinker transcription.
Nat Cell Biol. 2000 Oct;2(10):745-9. doi: 10.1038/35036383.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验