Torres-Méndez Antonio, Pop Sinziana, Bonnal Sophie, Almudi Isabel, Avola Alida, Roberts Ruairí J V, Paolantoni Chiara, Alcaina-Caro Ana, Martín-Anduaga Ane, Haussmann Irmgard U, Morin Violeta, Casares Fernando, Soller Matthias, Kadener Sebastian, Roignant Jean-Yves, Prieto-Godino Lucia, Irimia Manuel
Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.
Francis Crick Institute, London, UK.
Sci Adv. 2022 Jan 28;8(4):eabk0445. doi: 10.1126/sciadv.abk0445.
Alternative splicing increases neuronal transcriptomic complexity throughout animal phylogeny. To delve into the mechanisms controlling the assembly and evolution of this regulatory layer, we characterized the neuronal microexon program in and compared it with that of mammals. In nonvertebrate bilaterians, this splicing program is restricted to neurons by the posttranscriptional processing of the (eMIC) domain in . In , this processing is dependent on regulation by Elav/Fne. eMIC deficiency or misexpression leads to widespread neurological alterations largely emerging from impaired neuronal activity, as revealed by a combination of neuronal imaging experiments and cell type-specific rescues. These defects are associated with the genome-wide skipping of short neural exons, which are strongly enriched in ion channels. We found no overlap of eMIC-regulated exons between flies and mice, illustrating how ancient posttranscriptional programs can evolve independently in different phyla to affect distinct cellular modules while maintaining cell-type specificity.
可变剪接增加了整个动物系统发育过程中神经元转录组的复杂性。为了深入探究控制这一调控层组装和进化的机制,我们对[具体物种]的神经元微外显子程序进行了表征,并将其与哺乳动物的进行了比较。在非脊椎两侧对称动物中,这种剪接程序通过[特定蛋白]中(eMIC)结构域的转录后加工而局限于神经元。在[具体物种]中,这种加工依赖于Elav/Fne的调控。eMIC缺陷或错误表达会导致广泛的神经学改变,这些改变主要源于神经元活动受损,这是通过神经元成像实验和细胞类型特异性拯救实验相结合所揭示的。这些缺陷与全基因组范围内短神经外显子的跳跃有关,这些外显子在离子通道中高度富集。我们发现果蝇和小鼠中eMIC调控的外显子没有重叠,这说明了古老的转录后程序如何在不同的门中独立进化,以影响不同的细胞模块,同时保持细胞类型特异性。