Suppr超能文献

KatG的超氧化物反应性:对结核病中异烟肼耐药途径的见解

Superoxide reactivity of KatG: insights into isoniazid resistance pathways in TB.

作者信息

Ghiladi Reza A, Cabelli Diane E, Ortiz de Montellano Paul R

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA.

出版信息

J Am Chem Soc. 2004 Apr 21;126(15):4772-3. doi: 10.1021/ja031728t.

Abstract

To gain insight into the mechanism of INH activation by KatG and to understand how resistance is conferred by the single active-site point mutation of KatG(S315T), we have employed pulse radiolysis as the means to initiate a catalytic pathway capable of mimicking the in vivo oxidation of isoniazid (INH). Radiolysis of a solution containing WT KatG revealed two intermediates: compound III (oxyferrous KatG) [415 (Soret), 545, 580 nm] formed [k1 = (4.47 +/- 0.91) x 105 M-1 s-1] in the absence of INH and compound II (410 (Soret), 540, 575 nm) formed [k1 = (4.43 +/- 0.69) x 105 M-1 s-1] in the presence of INH, with a comparison of the rates suggesting that compound III (rate-limiting) precedes compound II formation. By contrast, radiolysis of KatG(S315T) only led to compound III formation, whether INH was present [k1 = (4.72 +/- 0.99) x 105 M-1 s-1] or not [k1 = (4.51 +/- 1.38) x 105 M-1 s-1]. HPLC studies to determine the rates of INH-NADH adduct formation (an inhibitor of InhA) as catalyzed by KatG were also performed employing various oxidants: air [WT: (7.18 +/- 1.25) x 10-4, S315T: (0.74 +/- 0.39) x 10-4], superoxide (SOTS-1) [WT: (9.22 +/- 1.10) x 10-4, S315T: not detected], and tert-butylhydroperoxide [WT: (20.5 +/- 1.13) x 10-4, S315T: (10.15 +/- 0.19) x 10-4]. Taken together, the results from the pulse radiolysis work as well as the InhA inhibitor studies allow us to propose a mechanism capable of correlating the inability for the oxyferrous intermediate of KatG(S315T) to oxidize ("activate") INH to the suppressed formation of the INH-NADH adduct, thereby leading to INH resistance in Mycobacterium tuberculosis.

摘要

为深入了解KatG激活异烟肼(INH)的机制,并理解KatG(S315T)的单个活性位点点突变如何赋予耐药性,我们采用脉冲辐解作为引发催化途径的手段,该途径能够模拟体内异烟肼(INH)的氧化过程。对含有野生型KatG的溶液进行辐解,发现了两种中间体:在不存在INH的情况下形成化合物III(氧亚铁KatG)[415(Soret)、545、580 nm] [k1 = (4.47 ± 0.91) x 105 M-1 s-1],在存在INH的情况下形成化合物II(410(Soret)、540、575 nm)[k1 = (4.43 ± 0.69) x 105 M-1 s-1],速率比较表明化合物III(限速步骤)先于化合物II的形成。相比之下,无论是否存在INH,KatG(S315T)的辐解仅导致化合物III的形成[k1 = (4.72 ± 0.99) x 105 M-1 s-1] [k1 = (4.51 ± 1.38) x 105 M-1 s-1]。还使用各种氧化剂进行了HPLC研究,以确定KatG催化的INH-NADH加合物形成速率(InhA的抑制剂):空气[野生型:(7.18 ± 1.25) x 10-4,S315T:(0.74 ± 0.39) x 10-4]、超氧化物(SOTS-1)[野生型:(9.22 ± 1.10) x 10-4,S315T:未检测到]和叔丁基过氧化氢[野生型:(20.5 ± 1.13) x 10-4,S315T:(10.15 ± 0.19) x 10-4]。综合来看,脉冲辐解研究以及InhA抑制剂研究的结果使我们能够提出一种机制,该机制能够将KatG(S315T)的氧亚铁中间体无法氧化(“激活”)INH与INH-NADH加合物形成受抑制相关联,从而导致结核分枝杆菌对INH产生耐药性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验