Ghiladi Reza A, Medzihradszky Katalin F, Rusnak Frank M, Ortiz de Montellano Paul R
Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA.
J Am Chem Soc. 2005 Sep 28;127(38):13428-42. doi: 10.1021/ja054366t.
Isoniazid is an antituberculosis prodrug that requires activation by the catalase-peroxidase (KatG) of Mycobacterium tuberculosis. The activated species, presumed to be an isonicotinoyl radical, couples to NADH forming an isoniazid-NADH adduct that ultimately confers antitubercular activity. We have compared the catalytic properties of three KatGs associated with isoniazid resistance (resistance mutation KatGs, (RM)KatGs: R104L, H108Q, S315T) to wild-type enzyme and two additional lab mutations (wild-type phenotype KatGs, (WTP)KatGs: WT KatG, Y229F, R418L). Neither catalase nor peroxidase activities, nor the presence/absence of the Met-Tyr-Trp cross-link (as probed by LC/MS on tryptic digests of the protein), exhibited any correlation with isoniazid resistance. The yields of isoniazid-NADH adduct formed were determined to be 1-5, 4-12, and 20-70-fold greater for the (WTP)KatGs than the (RM)KatGs for the compound I, II, and III pathways, respectively, strongly suggesting a role for oxyferrous KatG (supported by superoxide consumption measurements) that correlates with drug resistance. Stopped-flow UV-visible spectroscopic studies revealed that all KatGs were capable of forming both compound II and III intermediates. Rates of compound II decay were accelerated 4-12-fold in the presence of isoniazid (vs absence) for the (WTP)KatGs but were unaffected by the drug for the (RM)KatGs. A mechanism for isoniazid resistance which accounts for the observed reactivity for each of the compound I, II, and III intermediates is proposed and suggests that the compound III pathway may be the primary factor in determining overall isoniazid resistance by specific KatG mutants, with secondary contributions arising from the compound I and II pathways.
异烟肼是一种抗结核前体药物,需要结核分枝杆菌的过氧化氢酶-过氧化物酶(KatG)激活。被认为是异烟酰基自由基的活化产物与NADH偶联,形成异烟肼-NADH加合物,最终赋予抗结核活性。我们比较了与异烟肼耐药性相关的三种KatG(耐药性突变KatG,(RM)KatG:R104L、H108Q、S315T)与野生型酶以及另外两种实验室突变(野生型表型KatG,(WTP)KatG:野生型KatG、Y229F、R418L)的催化特性。过氧化氢酶活性、过氧化物酶活性以及Met-Tyr-Trp交联的有无(通过对蛋白质胰蛋白酶消化产物进行LC/MS检测)均与异烟肼耐药性无任何相关性。对于化合物I、II和III途径,(WTP)KatG形成异烟肼-NADH加合物的产量分别比(RM)KatG高1-5倍、4-12倍和20-70倍,这有力地表明了氧亚铁KatG的作用(超氧化物消耗测量结果支持这一点)与耐药性相关。停流紫外-可见光谱研究表明,所有KatG都能够形成化合物II和III中间体。在异烟肼存在的情况下(与不存在时相比),(WTP)KatG的化合物II衰变速率加快了4-12倍,但该药物对(RM)KatG的化合物II衰变速率没有影响。本文提出了一种异烟肼耐药机制,该机制解释了观察到的化合物I、II和III中间体各自的反应活性,并表明化合物III途径可能是特定KatG突变体决定总体异烟肼耐药性的主要因素,化合物I和II途径起次要作用。