Iavarone Anthony T, Paech Kolja, Williams Evan R
Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
Anal Chem. 2004 Apr 15;76(8):2231-8. doi: 10.1021/ac035431p.
Electron capture dissociation (ECD) is a promising method for de novo sequencing proteins and peptides and for locating the positions of labile posttranslational modifications and binding sites of noncovalently bound species. We report the ECD of a synthetic peptide containing 10 alanine residues and 6 lysine residues uniformly distributed across the sequence. ECD of the (M + 2H)(2+) produces a limited range of c (c(7)-c(15)) and z (z(9)-z(15)) fragment ions, but ECD of higher charge states produces a wider range of c (c(2)-c(15)) and z (z(2)-z(6), z(9)-z(15)) ions. Fragmentation efficiency increases with increasing precursor charge state, and efficiencies up to 88% are achieved. Heating the (M + 2H)(2+) to 150 degrees C does not increase the observed range of ECD fragment ions, indicating that the limited products are due to backbone cleavages occurring near charges and not due to effects of tertiary structure. ECD of the (M + 2Li)(2+) and (M + 2Cs)(2+) produces di- and monometalated analogues of the same c and z ions observed from the (M + 2H)(2+), with the abundance of dimetalated fragment ions increasing with fragment ion mass, a result consistent with the metal cations being located near the peptide termini to minimize Coulombic repulsion. In stark contrast to the ECD results, collisional activation of cesiated dications overwhelmingly results in ejection of Cs(+). The abundance of cesiated fragment ions formed from ECD of the (M + Cs + Li)(2+) exceeds that of lithiated fragment ions by 10:1. ECD of the (M + H + Li)(2+) results in exclusively lithiated c and z ions, indicating an overwhelming preference for neutralization and cleavage at protonated sites over metalated sites. These results are consistent with preferential neutralization of the cation with the highest recombination energy.
电子捕获解离(ECD)是一种很有前景的方法,可用于蛋白质和肽的从头测序,以及定位不稳定的翻译后修饰位置和非共价结合物种的结合位点。我们报告了一种合成肽的ECD,该肽含有10个丙氨酸残基和6个赖氨酸残基,这些残基在序列中均匀分布。(M + 2H)(2+)的ECD产生有限范围的c(c(7)-c(15))和z(z(9)-z(15))碎片离子,但更高电荷态的ECD产生更广泛范围的c(c(2)-c(15))和z(z(2)-z(6),z(9)-z(15))离子。碎片化效率随前体电荷态的增加而提高,最高可达88%。将(M + 2H)(2+)加热到150摄氏度不会增加观察到的ECD碎片离子范围,这表明有限的产物是由于电荷附近发生的主链裂解,而不是由于三级结构的影响。(M + 2Li)(2+)和(M + 2Cs)(2+)的ECD产生与从(M + 2H)(2+)观察到的相同c和z离子的双金属化和单金属化类似物,双金属化碎片离子的丰度随碎片离子质量增加,这一结果与金属阳离子位于肽末端附近以最小化库仑排斥一致。与ECD结果形成鲜明对比的是,铯化双阳离子的碰撞激活绝大多数导致Cs(+)的喷射。由(M + Cs + Li)(2+)的ECD形成的铯化碎片离子的丰度比锂化碎片离子的丰度高10:1。(M + H + Li)(2+)的ECD只产生锂化的c和z离子,表明在质子化位点而非金属化位点进行中和和裂解的压倒性偏好。这些结果与具有最高复合能的阳离子的优先中和一致。