Suppr超能文献

蛋白质结构片段的聚类揭示了自然界的模块化构建块方法。

Clustering of protein structural fragments reveals modular building block approach of nature.

作者信息

Tendulkar Ashish V, Joshi Anand A, Sohoni Milind A, Wangikar Pramod P

机构信息

Kanwal Rekhi School of Information Technology, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India.

出版信息

J Mol Biol. 2004 Apr 30;338(3):611-29. doi: 10.1016/j.jmb.2004.02.047.

Abstract

Structures of peptide fragments drawn from a protein can potentially occupy a vast conformational continuum. We co-ordinatize this conformational space with the help of geometric invariants and demonstrate that the peptide conformations of the currently available protein structures are heavily biased in favor of a finite number of conformational types or structural building blocks. This is achieved by representing a peptides' backbone structure with geometric invariants and then clustering peptides based on closeness of the geometric invariants. This results in 12,903 clusters, of which 2207 are made up of peptides drawn from functionally and/or structurally related proteins. These are termed "functional" clusters and provide clues about potential functional sites. The rest of the clusters, including the largest few, are made up of peptides drawn from unrelated proteins and are termed "structural" clusters. The largest clusters are of regular secondary structures such as helices and beta strands as well as of beta hairpins. Several categories of helices and strands are discovered based on geometric differences. In addition to the known classes of loops, we discover several new classes, which will be useful in protein structure modeling. Our algorithm does not require assignment of secondary structure and, therefore, overcomes the limitations in loop classification due to ambiguity in secondary structure assignment at loop boundaries.

摘要

从蛋白质中提取的肽片段结构可能占据一个广阔的构象连续体。我们借助几何不变量对这个构象空间进行坐标化,并证明目前可用蛋白质结构中的肽构象严重偏向于有限数量的构象类型或结构构建块。这是通过用几何不变量表示肽的主链结构,然后根据几何不变量的接近程度对肽进行聚类来实现的。这产生了12903个簇,其中2207个由从功能和/或结构相关蛋白质中提取的肽组成。这些被称为“功能”簇,并提供了关于潜在功能位点的线索。其余的簇,包括最大的几个簇,由从不相关蛋白质中提取的肽组成,被称为“结构”簇。最大的簇是规则的二级结构,如螺旋和β链以及β发夹。基于几何差异发现了几类螺旋和链。除了已知的环类,我们还发现了几个新的类,这将在蛋白质结构建模中有用。我们的算法不需要指定二级结构,因此克服了由于环边界处二级结构指定的模糊性而导致的环分类中的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验