Suppr超能文献

通过乙醇触发途径实现的微生物协同作用。

Microbial synergy via an ethanol-triggered pathway.

作者信息

Smith Michael G, Des Etages Shelley G, Snyder Michael

机构信息

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.

出版信息

Mol Cell Biol. 2004 May;24(9):3874-84. doi: 10.1128/MCB.24.9.3874-3884.2004.

Abstract

We have discovered a microbial interaction between yeast, bacteria, and nematodes. Upon coculturing, Saccharomyces cerevisiae stimulated the growth of several species of Acinetobacter, including, A. baumannii, A. haemolyticus, A. johnsonii, and A. radioresistens, as well as several natural isolates of Acinetobacter. This enhanced growth was due to a diffusible factor that was shown to be ethanol by chemical assays and evaluation of strains lacking ADH1, ADH3, and ADH5, as all three genes are involved in ethanol production by yeast. This effect is specific to ethanol: methanol, butanol, and dimethyl sulfoxide were unable to stimulate growth to any appreciable level. Low doses of ethanol not only stimulated growth to a higher cell density but also served as a signaling molecule: in the presence of ethanol, Acinetobacter species were able to withstand the toxic effects of salt, indicating that ethanol alters cell physiology. Furthermore, ethanol-fed A. baumannii displayed increased pathogenicity when confronted with a predator, Caenorhabditis elegans. Our results are consistent with the concept that ethanol can serve as a signaling molecule which can affect bacterial physiology and survival.

摘要

我们发现了酵母、细菌和线虫之间的一种微生物相互作用。共培养时,酿酒酵母刺激了几种不动杆菌的生长,包括鲍曼不动杆菌、溶血不动杆菌、约翰逊不动杆菌和抗辐射不动杆菌,以及几种不动杆菌的天然分离株。这种生长增强归因于一种可扩散因子,通过化学分析以及对缺乏ADH1、ADH3和ADH5的菌株进行评估表明该因子为乙醇,因为这三个基因都参与酵母的乙醇生产。这种效应是乙醇特有的:甲醇、丁醇和二甲基亚砜均无法刺激生长至任何可观水平。低剂量乙醇不仅刺激生长至更高的细胞密度,还充当信号分子:在乙醇存在的情况下,不动杆菌能够耐受盐的毒性作用,这表明乙醇改变了细胞生理学。此外,用乙醇喂养的鲍曼不动杆菌在面对捕食者秀丽隐杆线虫时表现出增强的致病性。我们的结果与乙醇可作为一种能够影响细菌生理学和生存的信号分子这一概念一致。

相似文献

1
Microbial synergy via an ethanol-triggered pathway.
Mol Cell Biol. 2004 May;24(9):3874-84. doi: 10.1128/MCB.24.9.3874-3884.2004.
2
Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae.
FEMS Yeast Res. 2012 Feb;12(1):33-47. doi: 10.1111/j.1567-1364.2011.00760.x. Epub 2011 Dec 15.
3
Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae.
J Biosci Bioeng. 2019 May;127(5):563-569. doi: 10.1016/j.jbiosc.2018.10.020. Epub 2018 Nov 24.
5
Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae.
J Biosci Bioeng. 2012 Feb;113(2):192-5. doi: 10.1016/j.jbiosc.2011.09.019. Epub 2011 Oct 26.
7
The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae.
J Bacteriol. 2000 Sep;182(17):4730-7. doi: 10.1128/JB.182.17.4730-4737.2000.
10
Resurrecting ancestral alcohol dehydrogenases from yeast.
Nat Genet. 2005 Jun;37(6):630-5. doi: 10.1038/ng1553. Epub 2005 May 1.

引用本文的文献

2
Impact of overlapping fungal infection on the occurrence and prognosis of carbapenem-resistant gram-negative bacilli infection.
Front Cell Infect Microbiol. 2025 May 30;15:1523233. doi: 10.3389/fcimb.2025.1523233. eCollection 2025.
3
Challenges in elucidating ethylene glycol metabolism in Saccharomyces cerevisiae.
FEMS Yeast Res. 2025 Jan 30;25. doi: 10.1093/femsyr/foaf006.
4
Case Report: Severe Community-Acquired Pneumonia in Réunion Island due to Acinetobacter baumannii.
Am J Trop Med Hyg. 2024 Jun 4;111(1):136-140. doi: 10.4269/ajtmh.23-0820. Print 2024 Jul 3.
7
Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens.
Gut Microbes. 2023 Jan-Dec;15(1):2226916. doi: 10.1080/19490976.2023.2226916.

本文引用的文献

1
Biochemical factors affecting symbiosis among bacteria.
Experientia. 1956 Jul 15;12(7):245-9. doi: 10.1007/BF02157327.
3
Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus.
FEMS Microbiol Lett. 2003 Mar 28;220(2):223-7. doi: 10.1016/S0378-1097(03)00103-4.
5
Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis.
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15675-80. doi: 10.1073/pnas.232568599. Epub 2002 Nov 15.
6
Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence.
FEMS Microbiol Rev. 2002 Mar;26(1):49-71. doi: 10.1111/j.1574-6976.2002.tb00598.x.
7
Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress.
Curr Opin Microbiol. 2002 Apr;5(2):208-10. doi: 10.1016/s1369-5274(02)00306-5.
8
Global analysis of the general stress response of Bacillus subtilis.
J Bacteriol. 2001 Oct;183(19):5617-31. doi: 10.1128/JB.183.19.5617-5631.2001.
9
General stress response of Bacillus subtilis and other bacteria.
Adv Microb Physiol. 2001;44:35-91. doi: 10.1016/s0065-2911(01)44011-2.
10
Identification of general stress genes in Enterococcus faecalis.
Int J Food Microbiol. 2000 Apr 10;55(1-3):87-91. doi: 10.1016/s0168-1605(00)00180-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验