Suppr超能文献

重组木糖发酵酿酒酵母中 TAL1 和 ADH1 的共表达提高了糠醛存在下木质纤维素水解物的乙醇产量。

Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

机构信息

Organization of Advanced Science and Technology, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan.

School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau, 02600 Perlis, Malaysia; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan.

出版信息

J Biosci Bioeng. 2014 Feb;117(2):165-169. doi: 10.1016/j.jbiosc.2013.07.007. Epub 2013 Aug 3.

Abstract

Lignocellulosic biomass dedicated to bioethanol production usually contains pentoses and inhibitory compounds such as furfural that are not well tolerated by Saccharomyces cerevisiae. Thus, S. cerevisiae strains with the capability of utilizing both glucose and xylose in the presence of inhibitors such as furfural are very important in industrial ethanol production. Under the synergistic conditions of transaldolase (TAL) and alcohol dehydrogenase (ADH) overexpression, S. cerevisiae MT8-1X/TAL-ADH was able to produce 1.3-fold and 2.3-fold more ethanol in the presence of 70 mM furfural than a TAL-expressing strain and a control strain, respectively. We also tested the strains' ability by mimicking industrial ethanol production from hemicellulosic hydrolysate containing fermentation inhibitors, and ethanol production was further improved by 16% when using MT8-1X/TAL-ADH compared to the control strain. Transcript analysis further revealed that besides the pentose phosphate pathway genes TKL1 and TAL1, ADH7 was also upregulated in response to furfural stress, which resulted in higher ethanol production compared to the TAL-expressing strain. The improved capability of our modified strain was based on its capacity to more quickly reduce furfural in situ resulting in higher ethanol production. The co-expression of TAL/ADH genes is one crucial strategy to fully utilize undetoxified lignocellulosic hydrolysate, leading to cost-competitive ethanol production.

摘要

木质纤维素生物质专门用于生物乙醇生产,通常含有戊糖和糠醛等抑制物,而这些物质酵母不能很好耐受。因此,在存在糠醛等抑制剂的情况下,能够同时利用葡萄糖和木糖的酿酒酵母菌株在工业乙醇生产中非常重要。在转醛醇酶(TAL)和醇脱氢酶(ADH)过表达的协同条件下,与表达 TAL 的菌株和对照菌株相比,酵母 MT8-1X/TAL-ADH 在 70 mM 糠醛存在下分别能够产生 1.3 倍和 2.3 倍的乙醇。我们还通过模拟含有发酵抑制剂的半纤维素水解物的工业乙醇生产来测试菌株的能力,与对照菌株相比,使用 MT8-1X/TAL-ADH 可使乙醇产量进一步提高 16%。转录分析进一步表明,除了戊糖磷酸途径基因 TKL1 和 TAL1 外,ADH7 也被糠醛胁迫上调,与表达 TAL 的菌株相比,这导致了更高的乙醇产量。我们改良菌株的改进能力基于其原位更快还原糠醛的能力,从而提高了乙醇产量。TAL/ADH 基因的共表达是充分利用未解毒木质纤维素水解物的关键策略之一,可实现具有成本竞争力的乙醇生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验