Suppr超能文献

酵母端粒区域DNA复制叉移动的解剖学与动力学

Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions.

作者信息

Makovets Svetlana, Herskowitz Ira, Blackburn Elizabeth H

机构信息

University of California, San Francisco, Department of Biochemistry and Biophysics, San Francisco, California 94143-2200,USA.

出版信息

Mol Cell Biol. 2004 May;24(9):4019-31. doi: 10.1128/MCB.24.9.4019-4031.2004.

Abstract

Replication initiation and replication fork movement in the subtelomeric and telomeric DNA of native Y' telomeres of yeast were analyzed using two-dimensional gel electrophoresis techniques. Replication origins (ARSs) at internal Y' elements were found to fire in early-mid-S phase, while ARSs at the terminal Y' elements were confirmed to fire late. An unfired Y' ARS, an inserted foreign (bacterial) sequence, and, as previously reported, telomeric DNA each were shown to impose a replication fork pause, and pausing is relieved by the Rrm3p helicase. The pause at telomeric sequence TG(1-3) repeats was stronger at the terminal tract than at the internal TG(1-3) sequences located between tandem Y' elements. We show that the telomeric replication fork pause associated with the terminal TG(1-3) tracts begins approximately 100 bp upstream of the telomeric repeat tract sequence. Telomeric pause strength was dependent upon telomere length per se and did not require the presence of a variety of factors implicated in telomere metabolism and/or known to cause telomere shortening. The telomeric replication fork pause was specific to yeast telomeric sequence and was independent of the Sir and Rif proteins, major known components of yeast telomeric heterochromatin.

摘要

利用二维凝胶电泳技术分析了酵母天然Y'端粒的亚端粒和端粒DNA中的复制起始和复制叉移动情况。发现内部Y'元件处的复制起点(ARSs)在S期早期至中期激活,而末端Y'元件处的ARSs则在晚期激活。一个未激活的Y' ARS、一个插入的外源(细菌)序列,以及如先前报道的端粒DNA,均显示会导致复制叉停顿,而Rrm3p解旋酶可缓解这种停顿。端粒序列TG(1-3)重复序列处的停顿在末端片段比串联Y'元件之间的内部TG(1-3)序列处更强。我们发现,与末端TG(1-3)片段相关的端粒复制叉停顿始于端粒重复序列上游约100 bp处。端粒停顿强度取决于端粒本身的长度,并且不需要多种参与端粒代谢和/或已知会导致端粒缩短的因子的存在。端粒复制叉停顿对酵母端粒序列具有特异性,并且独立于Sir和Rif蛋白,这两种蛋白是酵母端粒异染色质的主要已知成分。

相似文献

1
Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions.
Mol Cell Biol. 2004 May;24(9):4019-31. doi: 10.1128/MCB.24.9.4019-4031.2004.
3
Budding yeast Rap1, but not telomeric DNA, is inhibitory for multiple stages of DNA replication in vitro.
Nucleic Acids Res. 2021 Jun 4;49(10):5671-5683. doi: 10.1093/nar/gkab416.
4
Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae.
DNA Repair (Amst). 2020 Dec;96:102996. doi: 10.1016/j.dnarep.2020.102996. Epub 2020 Oct 19.
6
Ku Binding on Telomeres Occurs at Sites Distal from the Physical Chromosome Ends.
PLoS Genet. 2016 Dec 8;12(12):e1006479. doi: 10.1371/journal.pgen.1006479. eCollection 2016 Dec.
7
Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast.
EMBO Rep. 2011 Jun;12(6):587-93. doi: 10.1038/embor.2011.73. Epub 2011 Apr 28.
8
Getting it done at the ends: Pif1 family DNA helicases and telomeres.
DNA Repair (Amst). 2016 Aug;44:151-158. doi: 10.1016/j.dnarep.2016.05.021. Epub 2016 May 16.
9
Lack of positional requirements for autonomously replicating sequence elements on artificial yeast chromosomes.
Proc Natl Acad Sci U S A. 1989 Feb;86(3):973-7. doi: 10.1073/pnas.86.3.973.
10
The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation.
Mol Biol Cell. 2011 May 15;22(10):1753-65. doi: 10.1091/mbc.E10-06-0549. Epub 2011 Mar 25.

引用本文的文献

1
The DNA damage tolerance factor Rad5 and telomere replication.
Curr Genet. 2025 May 26;71(1):11. doi: 10.1007/s00294-025-01315-y.
2
Interstitial telomeric sequences promote gross chromosomal rearrangement via multiple mechanisms.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2407314121. doi: 10.1073/pnas.2407314121. Epub 2024 Nov 27.
4
Telomere maintenance and the DNA damage response: a paradoxical alliance.
Front Cell Dev Biol. 2024 Oct 17;12:1472906. doi: 10.3389/fcell.2024.1472906. eCollection 2024.
5
The functional significance of the RPA- and PCNA-dependent recruitment of Pif1 to DNA.
EMBO Rep. 2024 Apr;25(4):1734-1751. doi: 10.1038/s44319-024-00114-9. Epub 2024 Mar 13.
6
Telomeres as hotspots for innate immunity and inflammation.
DNA Repair (Amst). 2024 Jan;133:103591. doi: 10.1016/j.dnarep.2023.103591. Epub 2023 Nov 5.
10
TOF1 and RRM3 reveal a link between gene silencing and the pausing of replication forks.
Curr Genet. 2023 Dec;69(4-6):235-249. doi: 10.1007/s00294-023-01273-3. Epub 2023 Jun 22.

本文引用的文献

1
The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork.
Mol Cell Biol. 2003 Dec;23(24):9178-88. doi: 10.1128/MCB.23.24.9178-9188.2003.
2
Replication proteins influence the maintenance of telomere length and telomerase protein stability.
Mol Cell Biol. 2003 May;23(9):3031-42. doi: 10.1128/MCB.23.9.3031-3042.2003.
3
Ku complex controls the replication time of DNA in telomere regions.
Genes Dev. 2002 Oct 1;16(19):2485-90. doi: 10.1101/gad.231602.
4
Saccharomyces cerevisiae RRM3, a 5' to 3' DNA helicase, physically interacts with proliferating cell nuclear antigen.
J Biol Chem. 2002 Nov 22;277(47):45331-7. doi: 10.1074/jbc.M207263200. Epub 2002 Sep 17.
6
Replication dynamics of the yeast genome.
Science. 2001 Oct 5;294(5540):115-21. doi: 10.1126/science.294.5540.115.
9
Est1 and Cdc13 as comediators of telomerase access.
Science. 1999 Oct 1;286(5437):117-20. doi: 10.1126/science.286.5437.117.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验