Back Tobias, Hemmen Thomas, Schüler Olaf G
Department of Neurology, Philipps University Marburg, R.-Bultmann-Str. 8, 35039 Marburg, Germany.
J Neurol. 2004 Apr;251(4):388-97. doi: 10.1007/s00415-004-0399-y.
There is sound evidence from histopathological and magnetic resonance imaging (MRI) studies that focal ischemic brain lesions tend to increase in size over time. Considerable lesion growth was observed in models of animal stroke as well as in patients presenting with hemispheric stroke. In focal cerebral ischemia, lesions predominantly enlarge early within 12 hours after onset. Ischemic injury is caused by complete necrosis in most of the affected tissue. By contrast, in global cerebral ischemia as seen after cardiac arrest, lesions appear late (>12 h) in selectively vulnerable brain regions such as the hippocampus, and neurons are damaged by apoptotic cell death. The high and regionally distinct vulnerability of the brain explains why prolonged periods of global ischemia result in widespread loss of energy metabolites combined with diffuse brain edema and global damage. Postulated mechanisms involved in lesion growth include among others excitotoxicity, periinfarct depolarizations, lactacidosis, microcirculatory disturbances, and flow-metabolism uncoupling. Research in the field faces two main challenges. First,maturation phenomena of injury may require special imaging techniques to detect early ischemic changes. Second, the dynamic nature of the changes underlines the need to conduct longitudinal studies with a variety of imaging techniques (e. g., metabolic imaging, diffusion/perfusion MRI, positron emission tomography) that require a differentiated interpretation of the alterations observed.
组织病理学和磁共振成像(MRI)研究提供了可靠证据,表明局灶性缺血性脑损伤往往会随着时间推移而增大。在动物中风模型以及半球性中风患者中均观察到明显的损伤扩大。在局灶性脑缺血中,损伤主要在发病后12小时内早期扩大。缺血性损伤是由大部分受影响组织的完全坏死引起的。相比之下,在心脏骤停后出现的全脑缺血中,损伤在海马等选择性易损脑区出现较晚(>12小时),神经元因凋亡性细胞死亡而受损。大脑高度且区域特异性的易损性解释了为什么长时间的全脑缺血会导致能量代谢物广泛丧失,同时伴有弥漫性脑水肿和全脑损伤。推测参与损伤扩大的机制包括兴奋性毒性、梗死周围去极化、乳酸酸中毒、微循环障碍和血流-代谢解偶联等。该领域的研究面临两个主要挑战。第一,损伤的成熟现象可能需要特殊的成像技术来检测早期缺血变化。第二,这些变化的动态性质强调了需要采用多种成像技术(如代谢成像、扩散/灌注MRI、正电子发射断层扫描)进行纵向研究,这需要对观察到的改变进行差异化解读。