Suppr超能文献

分层泊松抽样下共同率比的八个区间估计量。

Eight interval estimators of a common rate ratio under stratified Poisson sampling.

作者信息

Lui Kung-Jong

机构信息

Department of Mathematics and Statistics, College of Sciences, San Diego State University, San Diego, CA 92182-7720, U.S.A.

出版信息

Stat Med. 2004 Apr 30;23(8):1283-96. doi: 10.1002/sim.1725.

Abstract

Under the assumption that the rate ratio (RR) is constant across strata, we consider eight interval estimators of RR under stratified Poisson sampling: the weighted least-squares (WLS) interval estimator with the logarithmic transformation, the interval estimator using the principle analogous to that of Fieller's Theorem, the interval estimators using Wald's statistic with and without the logarithmic transformation, the interval estimators using the Mantel-Haenszel statistic with and without the logarithmic transformation, the score test-based interval estimator, and the asymptotic likelihood ratio test-based interval estimator. We apply Monte Carlo simulation to evaluate and compare the performance of these estimators with respect to the coverage probability and the average length in a variety of situations. We find that the coverage probability of the commonly used WLS interval estimator tends to be smaller than the desired confidence level, especially when we have a large number of strata with a small expected total number of cases (ETNC) per stratum and the underlying RR is far away from 1 (i.e. RR18 or RR8). We further find that the two estimators with the logarithmic transformation, as well as the two test-based estimators can consistently perform well in a variety of situations. When RR1 with a given reasonable size of ETNC per stratum, we note that the interval estimators without the logarithmic transformation can be preferable to the corresponding ones with the logarithmic transformation in the situations considered here. However, when evaluating the non-coverage probability in the two tails, we find that the former tends to shift the left, while the latter is generally not subject to this concern. We also note that interval estimator using the Mantel-Haenszel (MH) statistic with the logarithmic transformation is likely less efficient than the two test-based interval estimators using the score and the likelihood ratio tests. Finally, we use the data taken from a study of the postmenopausal hormone use on the risk of breast cancer in women as an example to illustrate the use of these interval estimators considered here.

摘要

在率比(RR)在各层中保持恒定的假设下,我们考虑分层泊松抽样下RR的八种区间估计量:采用对数变换的加权最小二乘(WLS)区间估计量、使用与菲勒定理原理类似的区间估计量、使用有和没有对数变换的 Wald 统计量的区间估计量、使用有和没有对数变换的 Mantel-Haenszel 统计量的区间估计量、基于得分检验的区间估计量以及基于渐近似然比检验的区间估计量。我们应用蒙特卡罗模拟来评估和比较这些估计量在各种情况下关于覆盖概率和平均长度的性能。我们发现常用的WLS区间估计量的覆盖概率往往小于期望的置信水平,特别是当我们有大量的层,且每层的预期病例总数(ETNC)较少,并且潜在的RR远离1(即RR<1或RR>1)时。我们进一步发现,两种采用对数变换的估计量以及两种基于检验的估计量在各种情况下都能始终表现良好。当每层具有给定合理大小的ETNC且RR>1时,我们注意到在这里考虑的情况下,没有对数变换的区间估计量可能比相应的有对数变换的估计量更可取。然而,当评估两端的非覆盖概率时,我们发现前者往往向左偏移,而后者通常不存在这个问题。我们还注意到,采用对数变换的使用Mantel-Haenszel(MH)统计量的区间估计量可能不如使用得分和似然比检验的两种基于检验的区间估计量有效。最后,我们以一项关于绝经后激素使用对女性乳腺癌风险的研究中的数据为例,来说明这里所考虑的这些区间估计量的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验