Lui Kung-Jong
Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182-7720, USA.
Contemp Clin Trials. 2007 Feb;28(2):120-9. doi: 10.1016/j.cct.2006.05.005. Epub 2006 Jul 3.
Consider the simple compliance randomized trial (SCRT), in which patients assigned to an experimental group may switch to receive a control treatment, but patients assigned to a control group are assumed to all receive their assigned treatment. We develop five asymptotic interval estimators for the relative risk (RR) of probabilities of response among patients who would comply with the experimental treatment under the SCRT. We employ Monte Carlo simulation to evaluate the performance of these interval estimators in a variety of situations. We note that the interval estimator using Wald's statistic and the interval estimator derived from a quadratic equation based on asymptotic properties of the maximum likelihood estimator (MLE) can lose accuracy, while the most commonly-used interval estimator using a logarithmic transformation of the MLE for the RR suggested elsewhere can lose efficiency. We further note that the probability of failure to apply the interval estimator derived from an idea used in Fieller's Theorem to produce a confidence interval can be non-negligible even when the number of patients in both comparison groups is not small. Finally, we find that an interval estimator using a simple ad hoc procedure of combining two interval estimators with and without a logarithmic transformation of the MLE can consistently perform well with respect to the coverage probability even when the number of patients per treatment is not large. In fact, this estimator uniformly outperforms all the other estimators considered here and thereby is recommended for general use. We include an example regarding the study of vitamin A supplementation to reduce the mortality among preschool children to illustrate the use of interval estimators discussed in this paper.
考虑简单依从性随机试验(SCRT),在该试验中,被分配到实验组的患者可能转而接受对照治疗,但被分配到对照组的患者假定都接受其分配的治疗。我们针对SCRT下依从实验性治疗的患者中反应概率的相对风险(RR)开发了五个渐近区间估计量。我们采用蒙特卡罗模拟来评估这些区间估计量在各种情况下的性能。我们注意到,使用 Wald 统计量的区间估计量以及基于最大似然估计量(MLE)的渐近性质从二次方程推导而来的区间估计量可能会失去准确性,而在其他地方建议的对RR使用MLE的对数变换的最常用区间估计量可能会失去效率。我们还注意到,即使两个比较组中的患者数量不少,未能应用源自Fieller定理中使用的思想来产生置信区间的区间估计量的概率也可能不可忽略。最后,我们发现,使用一种简单的临时程序将两个分别对MLE进行对数变换和未进行对数变换的区间估计量相结合的区间估计量,即使每个治疗组的患者数量不多,在覆盖概率方面也能始终表现良好。事实上,这个估计量在整体上优于这里考虑的所有其他估计量,因此建议普遍使用。我们给出一个关于维生素A补充剂研究以降低学龄前儿童死亡率的例子,来说明本文中讨论的区间估计量的使用。