Suppr超能文献

医学研究中成本数据的参数建模。

Parametric modelling of cost data in medical studies.

作者信息

Nixon R M, Thompson S G

机构信息

Biostatistics Unit, University Forvie Site MRC, Robinson Way, Cambridge CB2 2SR, U.K.

出版信息

Stat Med. 2004 Apr 30;23(8):1311-31. doi: 10.1002/sim.1744.

Abstract

The cost of medical resources used is often recorded for each patient in clinical studies in order to inform decision-making. Although cost data are generally skewed to the right, interest is in making inferences about the population mean cost. Common methods for non-normal data, such as data transformation, assuming asymptotic normality of the sample mean or non-parametric bootstrapping, are not ideal. This paper describes possible parametric models for analysing cost data. Four example data sets are considered, which have different sample sizes and degrees of skewness. Normal, gamma, log-normal, and log-logistic distributions are fitted, together with three-parameter versions of the latter three distributions. Maximum likelihood estimates of the population mean are found; confidence intervals are derived by a parametric BC(a) bootstrap and checked by MCMC methods. Differences between model fits and inferences are explored.Skewed parametric distributions fit cost data better than the normal distribution, and should in principle be preferred for estimating the population mean cost. However for some data sets, we find that models that fit badly can give similar inferences to those that fit well. Conversely, particularly when sample sizes are not large, different parametric models that fit the data equally well can lead to substantially different inferences. We conclude that inferences are sensitive to choice of statistical model, which itself can remain uncertain unless there is enough data to model the tail of the distribution accurately. Investigating the sensitivity of conclusions to choice of model should thus be an essential component of analysing cost data in practice.

摘要

在临床研究中,通常会记录每位患者使用的医疗资源成本,以便为决策提供依据。尽管成本数据一般向右偏态分布,但人们感兴趣的是对总体平均成本进行推断。对于非正态数据的常用方法,如数据变换、假设样本均值的渐近正态性或非参数自助法,都不太理想。本文描述了用于分析成本数据的可能的参数模型。考虑了四个示例数据集,它们具有不同的样本大小和偏态程度。对正态分布、伽马分布、对数正态分布和对数逻辑斯蒂分布进行了拟合,同时还拟合了后三种分布的三参数版本。找到了总体均值的最大似然估计;通过参数化BC(a)自助法得出置信区间,并通过MCMC方法进行检验。探讨了模型拟合和推断之间的差异。偏态参数分布比正态分布更适合成本数据,原则上在估计总体平均成本时应优先选用。然而,对于某些数据集,我们发现拟合效果差的模型可能会给出与拟合效果好的模型相似的推断。相反,特别是当样本量不大时,对数据拟合效果同样好的不同参数模型可能会导致截然不同的推断。我们得出结论,推断对统计模型的选择很敏感,除非有足够的数据来准确模拟分布的尾部,否则统计模型本身可能仍然不确定。因此,在实际分析成本数据时,研究结论对模型选择的敏感性应该是一个重要组成部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验