Wiback Sharon J, Mahadevan Radhakrishnan, Palsson Bernhard Ø
Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Biotechnol Bioeng. 2004 May 5;86(3):317-31. doi: 10.1002/bit.20011.
Constraint-based metabolic modeling has been used to capture the genome-scale, systems properties of an organism's metabolism. The first generation of these models has been built on annotated gene sequence. To further this field, we now need to develop methods to incorporate additional "omic" data types including transcriptomics, metabolomics, and fluxomics to further facilitate the construction, validation, and predictive capabilities of these models. The work herein combines metabolic flux data with an in silico model of central metabolism of Escherichia coli for model centric integration of the flux data. The extreme pathways for this network, which define the allowable solution space for all possible flux distributions, are analyzed using the alpha-spectrum. The alpha-spectrum determines which extreme pathways can and cannot contribute to the metabolic flux distribution for a given condition and gives the allowable range of weightings on each extreme pathway that can contribute. Since many extreme pathways cannot be used under certain conditions, the result is a "condition-specific" solution space that is a subset of the original solution space. The alpha-spectrum results are used to create a "condition-specific" extreme pathway matrix that can be analyzed using singular value decomposition (SVD). The first mode of the SVD analysis characterizes the solution space for a given condition. We show that SVD analysis of the alpha-spectrum extreme pathway matrix that incorporates measured uptake and byproduct secretion rates, can predict internal flux trends for different experimental conditions. These predicted internal flux trends are, in general, consistent with the flux trends measured using experimental metabolic flux analysis techniques.
基于约束的代谢建模已被用于获取生物体代谢的基因组规模的系统特性。第一代这类模型是基于注释的基因序列构建的。为了推动该领域的发展,我们现在需要开发方法来纳入额外的“组学”数据类型,包括转录组学、代谢组学和通量组学,以进一步促进这些模型的构建、验证和预测能力。本文的工作将代谢通量数据与大肠杆菌中心代谢的计算机模型相结合,以实现通量数据的模型中心整合。使用α谱分析该网络的极端途径,这些极端途径定义了所有可能通量分布的允许解空间。α谱确定了哪些极端途径在给定条件下可以或不可以对代谢通量分布做出贡献,并给出了每个可贡献的极端途径上加权的允许范围。由于许多极端途径在某些条件下无法使用,结果是一个“条件特异性”解空间,它是原始解空间的一个子集。α谱结果用于创建一个“条件特异性”极端途径矩阵,该矩阵可以使用奇异值分解(SVD)进行分析。SVD分析的第一种模式表征了给定条件下的解空间。我们表明,对纳入测量的摄取和副产物分泌速率的α谱极端途径矩阵进行SVD分析,可以预测不同实验条件下的内部通量趋势。这些预测的内部通量趋势通常与使用实验代谢通量分析技术测量的通量趋势一致。