Bullinger Lars, Döhner Konstanze, Bair Eric, Fröhling Stefan, Schlenk Richard F, Tibshirani Robert, Döhner Hartmut, Pollack Jonathan R
Department of Pathology, Stanford University, Stanford, Calif, USA.
N Engl J Med. 2004 Apr 15;350(16):1605-16. doi: 10.1056/NEJMoa031046.
In patients with acute myeloid leukemia (AML), the presence or absence of recurrent cytogenetic aberrations is used to identify the appropriate therapy. However, the current classification system does not fully reflect the molecular heterogeneity of the disease, and treatment stratification is difficult, especially for patients with intermediate-risk AML with a normal karyotype.
We used complementary-DNA microarrays to determine the levels of gene expression in peripheral-blood samples or bone marrow samples from 116 adults with AML (including 45 with a normal karyotype). We used unsupervised hierarchical clustering analysis to identify molecular subgroups with distinct gene-expression signatures. Using a training set of samples from 59 patients, we applied a novel supervised learning algorithm to devise a gene-expression-based clinical-outcome predictor, which we then tested using an independent validation group comprising the 57 remaining patients.
Unsupervised analysis identified new molecular subtypes of AML, including two prognostically relevant subgroups in AML with a normal karyotype. Using the supervised learning algorithm, we constructed an optimal 133-gene clinical-outcome predictor, which accurately predicted overall survival among patients in the independent validation group (P=0.006), including the subgroup of patients with AML with a normal karyotype (P=0.046). In multivariate analysis, the gene-expression predictor was a strong independent prognostic factor (odds ratio, 8.8; 95 percent confidence interval, 2.6 to 29.3; P<0.001).
The use of gene-expression profiling improves the molecular classification of adult AML.
在急性髓系白血病(AML)患者中,复发性细胞遗传学异常的有无用于确定合适的治疗方法。然而,当前的分类系统并未充分反映该疾病的分子异质性,治疗分层困难,尤其是对于核型正常的中危AML患者。
我们使用互补DNA微阵列来测定116例成年AML患者(包括45例核型正常者)外周血样本或骨髓样本中的基因表达水平。我们使用无监督层次聚类分析来识别具有不同基因表达特征的分子亚组。利用来自59例患者的样本训练集,我们应用一种新型监督学习算法设计了一种基于基因表达的临床结局预测指标,然后使用由其余57例患者组成的独立验证组进行测试。
无监督分析确定了AML的新分子亚型,包括核型正常的AML中的两个与预后相关的亚组。使用监督学习算法,我们构建了一个最佳的133基因临床结局预测指标,该指标准确预测了独立验证组患者的总生存期(P = 0.006),包括核型正常的AML患者亚组(P = 0.046)。在多变量分析中,基因表达预测指标是一个强大的独立预后因素(优势比,8.8;95%置信区间,2.6至29.3;P < 0.001)。
基因表达谱分析的应用改善了成人AML的分子分类。