von Bardeleben R S, Kühl H P, Mohr-Kahaly S, Franke A
II. Medizinische Klinik und Poliklinik, Johannes-Gutenberg-Universität Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
Z Kardiol. 2004;93 Suppl 4:IV56-64. doi: 10.1007/s00392-004-1409-x.
Three-dimensional (3D) echocardiographic imaging has been introduced as a tool to improve the assessment of both morphologic and functional parameters of the cardiovascular system. In the past, data acquisition was limited due to time-consuming sequential acquisition of multiple triggered 2D image planes from 10-60 heart cycles using transesophageal rotational, transthoracic rotational or transthoracic freehand approaches. Recent improvements in the size of matrix array probes and in computing power of modern ultrasound equipment have significantly increased both spatial and temporal resolution of "second-generation" real-time 3D scanners. Although the superiority of 3D echocardiography in the determination of ventricular volume, ventricular mass or valvular orifice area had already been demonstrated in the late 1990s, widespread use in clinical cardiology was limited on account of difficulties in acquisition and post-processing. Clinical use of modern 3D echocardiography is boosted by the marked reduction in acquisition time and the unique possibility of on-line rendering on the ultrasound system. The ability to visualize a virtual 3D surface in real time-although limited to a sector size of about 30 degrees-offers new insights into cardiac pathomorpholgy even in patients with arrhythmias and may in realtime 3D-contrast flow analysis. Analysis of wide-angle 3D datasets (90 by 90 degree pyramidal shape) is possible by combining the 3D information of several [4-7] consecutive heart cycles. 3D datasets including the complete left ventricle provide comprehensive information on ventricular and mitral valve morphology and function. Qualitative and quantitative analyses of regional wall motion at rest and during stress become possible. Combination with 3D color Doppler data allows additional assessment of valvular function as well as determination of flow in the left ventricular outflow tract and across septal defects. The integration and future quantification of these new parameters together with on-line review allows new insights into cardiac function, morphology and synchrony that offer great potentials in the evaluation of right and left ventricular global and regional function, diagnosis of small areas of ischemia, congenital and valvular heart disease and effects of biventricular pacing in dilated heart asynchrony.
三维(3D)超声心动图成像已作为一种工具被引入,用于改善对心血管系统形态学和功能参数的评估。过去,由于使用经食管旋转、经胸旋转或经胸徒手方法从10 - 60个心动周期中耗时地顺序采集多个触发的二维图像平面,数据采集受到限制。矩阵阵列探头尺寸和现代超声设备计算能力的最新改进显著提高了“第二代”实时3D扫描仪的空间和时间分辨率。尽管在20世纪90年代末就已证明3D超声心动图在测定心室容积、心室质量或瓣膜口面积方面具有优越性,但由于采集和后处理困难,其在临床心脏病学中的广泛应用受到限制。现代3D超声心动图在临床中的应用因采集时间的显著缩短以及超声系统在线渲染的独特可能性而得到推动。实时可视化虚拟3D表面的能力——尽管限于约30度的扇区大小——即使对于心律失常患者也能为心脏病理形态学提供新的见解,并且可能用于实时3D对比血流分析。通过组合几个[4 - 7]连续心动周期的3D信息,可以分析广角3D数据集(90×90度金字塔形状)。包括完整左心室的3D数据集提供了关于心室和二尖瓣形态及功能的全面信息。静息和应激状态下局部壁运动的定性和定量分析成为可能。与3D彩色多普勒数据相结合,可以进一步评估瓣膜功能以及确定左心室流出道和室间隔缺损处的血流。这些新参数的整合和未来量化以及在线回顾能够为心脏功能、形态和同步性提供新的见解,在评估左右心室整体和局部功能、诊断小面积缺血、先天性和瓣膜性心脏病以及双心室起搏对扩张型心脏不同步的影响方面具有巨大潜力。