Alkire Michael T, White Nathan S, Hsieh Raymond, Haier Richard J
Department of Anesthesiology, University of California, Irvine, Orange, 92868, USA.
Anesthesiology. 2004 Apr;100(4):939-46. doi: 10.1097/00000542-200404000-00026.
To elucidate neural correlates associated with processing of tonic aching pain, the authors used high-field (3-T) functional magnetic resonance imaging with a blocked parametric study design and characterized regional brain responses to electrical stimulation according to stimulus intensity-response functions.
Pain was induced in six male volunteers using a 5-Hz electrical stimulus applied to the right index finger. Scanning sequences involved different levels of stimulation corresponding to tingling sensation (P1), mild pain (P2), or high pain (P3). Common effects across subjects were sought using a conjunction analyses approach, as implemented in statistical parametric mapping (SPM-99).
The contralateral posterior/mid insula and contralateral primary somatosensory cortex were most associated with encoding stimulus intensity because they showed a positive linear relation between blood oxygenation level-dependent signal responses and increasing stimulation intensity (P1 < P2 < P3). The contralateral secondary somatosensory cortex demonstrated a response function most consistent with a role in pain intensity encoding because it had no significant response during the innocuous condition (P1) but proportionally increased activity with increasingly painful stimulus intensities (0 < P2 < P3). Finally, a portion of the anterior cingulate cortex (area 24) and supplementary motor area 6 demonstrated a high pain-specific response (P3).
The use of response function modeling, conjunction analysis, and high-field imaging reveals dissociable regional responses to a tonic aching electrical pain. Most specifically, the primary somatosensory cortex and insula seem to encode stimulus intensity information, whereas the secondary somatosensory cortex encodes pain intensity information. The cingulate findings are consistent with its proposed role in processing affective-motivational aspects of pain.
为了阐明与持续性疼痛处理相关的神经关联,作者使用高场强(3-T)功能磁共振成像,采用了阻断参数研究设计,并根据刺激强度-反应函数对大脑区域对电刺激的反应进行了特征描述。
对6名男性志愿者的右手食指施加5赫兹的电刺激以诱发疼痛。扫描序列涉及对应于刺痛感(P1)、轻度疼痛(P2)或重度疼痛(P3)的不同刺激水平。使用统计参数映射(SPM-99)中实施的联合分析方法来寻找受试者之间的共同效应。
对侧后/中脑岛和对侧初级体感皮层与刺激强度编码最相关,因为它们在血氧水平依赖信号反应与刺激强度增加之间呈现正线性关系(P1 < P2 < P3)。对侧次级体感皮层表现出的反应函数与在疼痛强度编码中的作用最为一致,因为在无害条件(P1)下它没有显著反应,但随着刺激强度增加疼痛程度增加其活动成比例增加(0 < P2 < P3)。最后,前扣带回皮层的一部分(24区)和辅助运动区6表现出高疼痛特异性反应(P3)。
使用反应函数建模、联合分析和高场成像揭示了对持续性疼痛电刺激的可分离区域反应。最具体地说,初级体感皮层和脑岛似乎编码刺激强度信息,而次级体感皮层编码疼痛强度信息。扣带回的研究结果与其在疼痛情感-动机方面处理中的拟议作用一致。