Fleury F, Ris N, Allemand R, Fouillet P, Carton Y, Boulétreau M
Lab. Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France.
Genetica. 2004 Mar;120(1-3):181-94. doi: 10.1023/b:gene.0000017640.78087.9e.
Drosophila species are attacked by a number of parasitoid wasps, which constitute an important factor of population regulation. Since Drosophila melanogaster and Drosophila simulans share common parasitoid species, their ecology and evolution can hardly be understood without considering parasitoids. After a short review of data available on Drosophila-parasitoid interactions involving D. melanogaster and D. simulans as hosts, we report field and laboratory experiments investigating the ecological role of Leptopilina parasitoids in Drosophila communities of southern France. Seasonal survey of species abundance shows that strong interspecific interactions occur at both tropic levels. D. simulans progressively replaces D. melanogaster in southern areas suggesting competitive displacement. Parasitoids are responsible for very high Drosophila mortality (up to 90% in some fruits). Field data emphasize the importance of selective pressure that parasitoids exert on Drosophila communities. The two Leptopilina parasites (L. heterotoma and L boulardi) have different local abundances, which vary in time, and they also compete for hosts. We show that parasitoids can mediate the coexistence of D. melanogaster and D. simulans in the laboratory, and thus may contribute to their puzzling coexistence in the field. Conversely, hosts exert selective pressures on parasitoids, and development on either D. melanogaster or D. simulans strongly affects fitness of adult wasps in a temperature-dependent fashion. Local variation in host species abundance and diversity could thus account for the genetic differentiation we observed in one parasitoid species. Despite laboratory studies cannot fully explain complex field situations, it is clear that the ecology and evolution of Drosophila populations and communities, especially D. melanogaster and D. simulans, are strongly constrained by parasitoids, which should receive more attention.
果蝇物种会受到多种寄生蜂的攻击,这些寄生蜂是种群调节的一个重要因素。由于黑腹果蝇和拟暗果蝇共有一些寄生蜂物种,因此如果不考虑寄生蜂,就很难理解它们的生态学和进化情况。在简要回顾了以黑腹果蝇和拟暗果蝇为宿主的果蝇与寄生蜂相互作用的现有数据之后,我们报告了在法国南部果蝇群落中研究细蜂属寄生蜂生态作用的野外和实验室实验。物种丰度的季节性调查表明,在两个营养级上都存在强烈的种间相互作用。在南部地区,拟暗果蝇逐渐取代了黑腹果蝇,这表明存在竞争性取代。寄生蜂导致果蝇的死亡率非常高(在某些果实中高达90%)。野外数据强调了寄生蜂对果蝇群落施加的选择压力的重要性。两种细蜂属寄生虫(异腹黑卵蜂和布氏黑卵蜂)在当地的丰度不同,且随时间变化,它们也会争夺宿主。我们表明,寄生蜂在实验室中可以介导黑腹果蝇和拟暗果蝇的共存,因此可能有助于它们在野外令人费解的共存。相反,宿主也会对寄生蜂施加选择压力,在黑腹果蝇或拟暗果蝇上的发育会以温度依赖的方式强烈影响成年黄蜂的适合度。因此,宿主物种丰度和多样性的局部变化可以解释我们在一种寄生蜂物种中观察到的遗传分化。尽管实验室研究不能完全解释复杂的野外情况,但很明显,果蝇种群和群落,尤其是黑腹果蝇和拟暗果蝇的生态学和进化受到寄生蜂的强烈制约,寄生蜂应该受到更多关注。