Noh Jae Dong, Rieger Heiko
Department of Physics, Chungnam National University, Daejeon 305-764, Korea.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036111. doi: 10.1103/PhysRevE.69.036111. Epub 2004 Mar 23.
We study a random walk problem on the hierarchical network which is a scale-free network grown deterministically. The random walk problem is mapped onto a dynamical Ising spin chain system in one dimension with a nonlocal spin update rule, which allows an analytic approach. We show analytically that the characteristic relaxation time scale grows algebraically with the total number of nodes N as T--N(z). From a scaling argument, we also show the power-law decay of the autocorrelation function C(sigma)(t)--t(-alpha), which is the probability to find the Ising spins in the initial state sigma after t time steps, with the state-dependent nonuniversal exponent alpha. It turns out that the power-law scaling behavior has its origin in a quasiultrametric structure of the configuration space.
我们研究了分层网络上的随机游走问题,该分层网络是一个确定性增长的无标度网络。随机游走问题被映射到一个具有非局部自旋更新规则的一维动态伊辛自旋链系统上,这使得我们能够采用解析方法。我们通过解析证明,特征弛豫时间尺度随节点总数(N)呈代数增长,即(T\sim N^z)。通过标度论证,我们还表明自相关函数(C(\sigma)(t)\sim t^{-\alpha})呈幂律衰减,其中(C(\sigma)(t))是在(t)个时间步后找到处于初始状态(\sigma)的伊辛自旋的概率,且(\alpha)是与状态相关的非普适指数。结果表明,幂律标度行为源于构型空间的准超度量结构。