Suppr超能文献

具有非均匀影响的复杂网络上的随机游走。

Random walks on complex networks with inhomogeneous impact.

作者信息

Eisler Zoltán, Kertész János

机构信息

Department of Theoretical Physics, Budapest University of Technology and Economics, Budapest, Hungary.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):057104. doi: 10.1103/PhysRevE.71.057104. Epub 2005 May 27.

Abstract

In many complex systems, for the activity f(i) of the constituents or nodes i a power-law relationship was discovered between the standard deviation sigma(i) and the average strength of the activity: sigma(i) proportional variant <f(i)>alpha: universal values alpha=1/2 or 1 were found, however, with exceptions. With the help of an impact variable we present a random walk model where the activity is the product of the number of visitors at a node and their impact. If the impact depends strongly on the node connectivity and the properties of the carrying network are broadly distributed (as in a scale-free network) we find both analytically and numerically nonuniversal alpha values. The exponent always crosses over to the universal value of 1 if the external drive dominates.

摘要

在许多复杂系统中,对于组成部分或节点i的活动f(i),人们发现标准差σ(i)与活动的平均强度之间存在幂律关系:σ(i) ∝ <f(i)>α ;然而,发现通用值α = 1/2或1时存在例外情况。借助一个影响变量,我们提出了一个随机游走模型,其中活动是节点处访客数量与其影响的乘积。如果影响强烈依赖于节点连通性且承载网络的属性分布广泛(如在无标度网络中),我们通过解析和数值方法都发现了非通用的α值。如果外部驱动占主导,指数总是会过渡到通用值1。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验