Suppr超能文献

关于《热统计中q熵的批判》的评论。

Comment on "Critique of q-entropy for thermal statistics".

作者信息

Tsallis C

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):038101; author reply 038102. doi: 10.1103/PhysRevE.69.038101. Epub 2004 Mar 25.

Abstract

It was recently argued [M. Nauenberg, Phys. Rev. E 67, 036114 (2003)] that the theory sometimes referred to as nonextensive statistical mechanics has no physical basis, for a considerable variety of reasons, including the impossibility of measuring the temperature out of the Boltzmann-Gibbs (BG) theory. We comment here on virtually all the physically and mathematically relevant issues, and point out what we consider to be severe inadvertences contained in that paper. In particular, we factually argue, through computer simulations, the validity of the zeroth principle of thermodynamics, and of the basic rules of thermometry for nonextensive systems. This fact further supports the possible connection with the thermodynamics of nonextensive statistical mechanics, which is already known to be consistent with the first, second, and third principles. All the foundational steps (e.g., the uniqueness of the entropy and the stationary state distribution) have already been established for nonextensive thermostatistics on similar grounds than those long known for BG statistics, the former corresponding to power laws (expected for long-range interactions when size N diverges before time t), and the latter correspond to the BG exponential law (expected for long-range interactions when N diverges after t, as well as for short-range interactions in any diverging order for N and t). We conclude that the invalidating arguments made by Nauenberg by no means apply.

摘要

最近有人认为[M. 瑙恩贝格,《物理评论E》67,036114(2003)],有时被称为非广延统计力学的理论没有物理基础,原因有很多,包括无法在玻尔兹曼 - 吉布斯(BG)理论之外测量温度。我们在此对几乎所有物理和数学相关问题进行评论,并指出我们认为该论文中存在的严重疏忽。特别是,我们通过计算机模拟实际论证了热力学第零定律以及非广延系统温度测量基本规则的有效性。这一事实进一步支持了与非广延统计力学热力学可能存在的联系,已知这种联系与第一、第二和第三定律是一致的。与BG统计基于长期以来已知的类似理由一样,非广延统计热力学的所有基础步骤(例如,熵和稳态分布的唯一性)都已确立,前者对应幂律(当尺寸N在时间t之前发散时,对于长程相互作用是预期的),而后者对应BG指数律(当N在t之后发散时,对于长程相互作用是预期的,以及对于N和t以任何发散阶数的短程相互作用也是预期的)。我们得出结论,瑙恩贝格提出的无效论证根本不适用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验