Suppr超能文献

非广延统计力学:对偶熵与对偶概率之间的等价性

Nonextensive Statistical Mechanics: Equivalence Between Dual Entropy and Dual Probabilities.

作者信息

Livadiotis George

机构信息

Division of Space Science and Engineering, Southwest Research Institute, San Antonio, TX 78238, USA.

出版信息

Entropy (Basel). 2020 May 26;22(6):594. doi: 10.3390/e22060594.

Abstract

The concept of duality of probability distributions constitutes a fundamental "brick" in the solid framework of nonextensive statistical mechanics-the generalization of Boltzmann-Gibbs statistical mechanics under the consideration of the -entropy. The probability duality is solving old-standing issues of the theory, e.g., it ascertains the additivity for the internal energy given the additivity in the energy of microstates. However, it is a rather complex part of the theory, and certainly, it cannot be trivially explained along the Gibb's path of entropy maximization. Recently, it was shown that an alternative picture exists, considering a dual entropy, instead of a dual probability. In particular, the framework of nonextensive statistical mechanics can be equivalently developed using - and 1/- entropies. The canonical probability distribution coincides again with the known -exponential distribution, but without the necessity of the duality of ordinary-escort probabilities. Furthermore, it is shown that the dual entropies, -entropy and 1/-entropy, as well as, the 1-entropy, are involved in an identity, useful in theoretical development and applications.

摘要

概率分布对偶性的概念是广义统计力学坚实框架中的一块基本“基石”,广义统计力学是在考虑非广延熵的情况下对玻尔兹曼 - 吉布斯统计力学的推广。概率对偶性正在解决该理论中长期存在的问题,例如,在微观态能量具有可加性的情况下,它确定了内能的可加性。然而,它是该理论中相当复杂的一部分,当然,沿着吉布斯熵最大化的路径无法简单地对其进行解释。最近,研究表明存在另一种图景,即考虑对偶熵而非对偶概率。特别地,广义统计力学的框架可以等效地用非广延熵和1/非广延熵来发展。正则概率分布再次与已知的非广延指数分布一致,但无需普通伴随概率的对偶性。此外,研究表明对偶熵,即非广延熵和1/非广延熵,以及1熵,参与了一个恒等式,这在理论发展和应用中很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验