Keenan Daniel M, Alexander Susan, Irvine Clifford H G, Clarke Iain, Scott Chris, Turner Anne, Tilbrook A J, Canny B J, Veldhuis Johannes D
Department of Statistics, University of Virginia, Charlottesville, VA 22904, USA.
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6740-5. doi: 10.1073/pnas.0300619101. Epub 2004 Apr 16.
Homeostasis in the intact organism is achieved implicitly by repeated incremental feedback (inhibitory) and feedforward (stimulatory) adjustments enforced via intermittent signal exchange. In separated systems, neurohormone signals act deterministically on target cells via quantifiable effector-response functions. On the other hand, in vivo interglandular signaling dynamics have not been estimable to date. Indeed, experimentally isolating components of an interactive network definitionally disrupts time-sensitive linkages. We implement and validate analytical reconstruction of endogenous effector-response properties via a composite model comprising (i) a deterministic basic feedback and feedforward ensemble structure; (ii) judicious statistical allowance for possible stochastic variability in individual biologically interpretable dose-response properties; and (iii) the sole data requirement of serially observed concentrations of a paired signal (input) and response (output). Application of this analytical strategy to a prototypical neuroendocrine axis in the conscious uninjected horse, sheep, and human (i) illustrates probabilistic estimation of endogenous effector dose-response properties; and (ii) unmasks statistically vivid (2- to 5-fold) random fluctuations in inferred target-gland responsivity within any given pulse train. In conclusion, balanced mathematical formalism allows one to (i) reconstruct deterministic properties of interglandular signaling in the intact mammal and (ii) quantify apparent signal-response variability over short time scales in vivo. The present proof-of-principle experiments introduce a previously undescribed means to estimate time-evolving signal-response relationships without isotope infusion or pathway disruption.
完整机体中的稳态是通过间歇性信号交换强制进行的反复增量反馈(抑制性)和前馈(刺激性)调节来隐性实现的。在分离的系统中,神经激素信号通过可量化的效应器 - 反应函数对靶细胞起确定性作用。另一方面,体内腺间信号传导动力学迄今尚无法估计。实际上,从定义上讲,通过实验分离交互式网络的组成部分会破坏时间敏感的联系。我们通过一个复合模型实现并验证了内源性效应器 - 反应特性的分析重建,该模型包括:(i)一个确定性的基本反馈和前馈整体结构;(ii)对个体生物学上可解释的剂量 - 反应特性中可能的随机变异性进行明智的统计考虑;以及(iii)对成对信号(输入)和反应(输出)的系列观测浓度的唯一数据要求。将这种分析策略应用于清醒未注射的马、羊和人类的典型神经内分泌轴,(i)说明了内源性效应器剂量 - 反应特性的概率估计;(ii)揭示了在任何给定脉冲序列中推断的靶腺反应性中具有统计学显著性(2至5倍)的随机波动。总之,平衡的数学形式主义使人们能够(i)重建完整哺乳动物体内腺间信号传导的确定性特性,以及(ii)量化体内短时间尺度上明显的信号 - 反应变异性。目前的原理验证实验引入了一种以前未描述的方法,无需同位素注入或途径破坏即可估计随时间演变的信号 - 反应关系。